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FOREWORD 

This report details and describes design procedures for piles 
subjected to lateral loads. It will be of interest to 
geotechnical and bridge engineers. 

This report presents the results of the University of Texas, 
research project, "Behavior of Piles and Pile Groups Under 
Lateral Load." The program was conducted for the Federal 
Highway Administration, Office of Engineering and Highway 
Operations Research and Development, Washington, D.C., under 
Interagency agreement DTFH61-84-Y-3OOO5. This final report 
covers the period of research and development from September 
28, 1982, to May 1, 1983. 

Sufficient copies of the report are being distributed by FHWA 
Builetin to provide a minimum of two copies to each FHWA regional 
office, two copies to each FHWA division, and two copies to each 
State highway agency. Direct distribution is being made to the 
division offices. 

Office of Engi eering 

NOTICE 

and Highway perations 
Research and Development 

This document is disseminated under the sponsorship of the 
Department of Transportation in the interest of information 
exchange. The United States Government assumes no liability 
for its contents or use thereof. The contents of this report 
reflect the views of the contractor, who is responsible for the 
accuracy of the data presented herein. The contents do not 
necessarily reflect the official policy of the Department of 
Transportation. This report does not constitute a standard, 
specification, or regulation. 

The United States Government does not endorse products or 
manufacturers. Trade or manufacturers' names appear herein 
only because they are considered essential to the object of 
this document. 
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PREFACE 

In 1977, the Implementation Division of the Federal Highway Adminis

tration sponsored the writer and colleagues in the preparation of a 

two-volume work entitled, "Design Manual for Drilled Shafts. 11 Volume 2 of 

that work presented design procedures for drilled shafts subjected to lat

eral loads. This present volume, a manual for highway engineers, is 

related to piles and drilled shafts and updates and enlarges on the 1977 

work. This manual is sponsored by the Research Division of the Federal 

Highway Administration. 

The objectives of the manual are to present background material, 

design procedures, and methods of verifying computations for deep founda

tions under lateral load. Emphasis is placed on the use of nonlinear 

curves for soil response and the use of numerical procedures to solve the 

governing differential equation. An Executive Summary of this work 

includes recommendations for further research and the means of carrying 

out that research. 

A companion work is under preparation for the Implementation Divi

sion of FHWA and is entitled, 11 Handbook on Design of Piles and Drilled 

Shafts under Lateral Load. 11 A draft of that work was employed in two 

two-day workshops, the first in Austin, Texas in June, 1983, and the sec

ond in Albany, New York in July, 1983. 
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CHAPTER 1. INTRODUCTION 

Laterally loaded piles are found in many structures, both onshore and 

offshore. In many instances in the past, and even today, pile foundations 

have been designed so that each pile takes only a nominal lateral load or 

batter piles are employed. When batter piles are utilized in a structure, 

the assumption is frequently made that any horizontal load is sustained by 

the horizontal component of the axial load. The assumption that batter 

piles do not deflect laterally is, of course, incorrect as will be shown 

subsequently. 

With increasing cost of labor and materials and with decreasing cost 

of computations, situations are ar:ising where it is cost effective to 

employ more engineering effort. Furthermore, designers are finding it 

desirable to create more complex structures and severe loadings are being 

encountered, such as those on offshore structures. Thus, in some cases it 

is necessary to consider as well as possible the various deformations of a 

structure and its foundation under a wide range of loading. Therefore, 

procedures such as those given herein are needed to allow analyses of 

foundations in as rational a manner as possible. 

As a foundation problem, the analysis of a pile under lateral loading 

is complicated by the fact that the soil reaction (resistance) is depen

dent on the pile movement, and the pile movement, on the other hand, is 

dependent on the soil response. Thus, the problem is one of 

soil-structure interaction. 

The method of solution of the problem of the laterally loaded pile 

described herein (the p,-y method) is being used in the United States and 

abroad. Numerous references in the following chapters will illustrate the 

use of the method. To illustrate the use abroad, references are cited 

from Italy (Jamilkowski, 1977), France (Baguelin, et al., 1978), Britain 

(George and Wood, 1976), Australia (Poulos and Davis, 1980), and Norway 

(Det Norske Veritas, 1977). The method is included in Planning, Designing 

and Constructing Fixed Offshore Platforms, RP2A, American Petroleum 

Institute. That publication has guided the design of offshore drilling 

platforms in the United States and has significantly influenced their 

design elsewhere. The method is expected to be used increasingly in the 

design of onshore facilities. 
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However, a number of additional developments are needed. One of the 

most important is simply the acquisition of sufficient data to improve the 

quality of the recommended soil-response curves. It would be desirable if 

enough data were available to allow a statistical approach to the use of 

the soil-response curves. 

1. 1 SOIL-STRUCTURE INTERACTION 

The term 11 soil-structure interaction 11 has been used frequently in 

connection with the analysis of structures that sustain seismic loads; 

however, the term has relevance to loads that are short-term, repeated at 

relatively low frequencies, or sustained. Reflection will show that every 

problem in foundation design, if fully solved, is one o·f soil-structure 

interaction. For example, the strip footing in Fig. 1.1 can be 

considered. Not only is it desirable to know at what load the footing 

will plunge so that an appropriate factor of safety can be employed to 

prevent a soil failure, it is necessary to know the way the bearing stress 

is distributed at the base of the footing so that the footing can be prop

erly reinforced. 

wall 

Fi9. 1.1. Strip footi110. 

In order for a bearing stress to be mobilized the footing must move 

down, however slightly. It is unlikely that a uniform bearing stress will 

develop such as the one shown. Depending on the supporting soil , the 

bearing stress at the edge of the footing may either be lower or higher 

than the average. However, for purposes of discussion the assumption is 
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made that the stress is uniform as shown. The extension of the footing 

beyond the wall behaves as a short, cantilever beam and the downward move

ment of the edge of the footing is less than that at the center. 

Conceptually, then, the bearing stress should be different at the edge and 

at the center of the footing to reflect the difference in downward move

ment. 

The pattern of the distribution of the bearing stress should change 

with the change in applied load because the stress-deformation character

istics of soil are nonlinear. Thus, as loading on the footing increases 

there will be a nonlinear increase in the bending moment in the footing at 

the edge of the wall. There is, of course, a complex state of stress in 

the soil beneath the footing and a complex pattern of deformations. The 

soil response at the base of the footing is more complex if the loading 

has a lateral component or an eccentricity. 

The problem of the strip footing is frequently trivial because suffi

cient reinforcement can be provided for a small expense to make the foot

ing safe against any pattern of distribution of bearing stress. The same 

argument cannot be made for a mat foundation, however, where the thickness 

of the mat and the amount of reinforcing steel will vary widely according 

to the distribution of bearing stress. The problem of the mat foundation 

is a soil-structure-interaction problem that needs additional attention. 

The pile foundation is an excellent case to use in discussing 

soil-structure interaction. While the material in this volume is directed 

toward the pile under lateral loading, it is of interest to consider the 

general behavior of a pile under axial loading as well. Figure 1.2 shows 

a model of an axially loaded deep foundation. The soil has been replaced 
' with a series of mechanisms and the pile has been replaced with a stiff 

spring. A study of the model will indicate the following significant 

points about a soil-structure -interaction problem: the pile is 

deformable, a movement of the pile is necessary to mobilize soil 

resistance, the soil response is a nonlinear function of pile movement, 

there is a limiting soil response, and if the model can be described 

numerically, computations can be made to obtain the response of the 

system. 

The above characteristics of a pile under axial load also pertain to 

a pile under lateral loading, shown in Fig. 1.3. As may be seen in the 

figure, the soil is again replaced by a set of mechanisms that indicate a 
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Fig. 1.2. Model of a pile under 
axial load. 

Fig. 1.3. Model of a pile under 
lateral load. 

nonlinear response to the lateral deflection of the pile. The mechanisms 

indicate the soil resistance p per unit length of the pile as a function 

of the pile deflection y. The p-y curves will be discussed in detail in a 

l~ter chapter. If such curves are available, the computations for pile 

deflection and bending moment can be ~ade readily if pile dimensions and 

pile-head loading are known. 

A feature that is common in the two models shown in Figs. 1.2 and 1.3 

is that the soil is characterized by a set of discrete, independent mech

anisms. This sort of modelling is not strictly correct, of .course, . 
because the soil is a continuum and a deformation at any point in the con-

tinuum will cause a deformation at all other points. The theoretical dif

ficulty of modelling the soil as indicated in Fig. 1.3 causes little 
practical difficulty, as will be discussed later. 
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The methods that are used to analyze the behavior of a single pile 

under lateral load can also be extended in developing approximate methods 

for the analysis of a group of closely-spaced piles. This problem in 

soil-structure interaction is treated in a later chapter. 

An important problem in the mechanics of pile behavior is the compu

tation of the magnitude of the loads and moments that are distributed to a 

group of widely-spaced piles, including batter piles, that support a pile 

cap or structure. As demonstrated later, the solution to such a problem 

can be made as exactly as the behavior of the individual piles under axial 

and lateral load can be computed. 

1.2 METHODS OF SOLUTION OF LATERALLY LOADED PILES 

The principal method of solution presented herein requires the mod

elling of the soil by p-y curves and the computation of the pile response 

by digital computer. The differential equation that governs the pile 

behavior, even with nonlinear soil response, can be conveniently solved by 

use of difference equations. 

In addition to the computer solution, the use of nondimensional 

curves has an important role in the analysis of laterally loaded piles. 

Nondimensional methods can be used to demonstrate with clarity the nature 

of the computer method and, furthermore, can be used to obtain a check of 

the computer results. 

Two other methods of analysis are presented, the methods of Broms 

(1964a, 1964b, 1965) and Poulos and Davis (1980). Broms' method is ingen

ious and is based primarily on the use of limiting values of soil resist

ance. The method of Poulos and Davis is based on the theory of 

elasticity. Both of these methods have had considerable use in practice 

and the designer of a particular foundation may wish to employ one or both 

of them as a check or to give additional insight into a design problem. 

1.3 DESIGN PROBLEMS 

Some of the applications of piles under lateral loading are shown in 

Fig. 1.4. There are other examples, including high-rise buildings, sol

dier piles in a retaining structure, well-head supports, 

slope-stabilizing elements, and river crossings for pipelines. 

The principal kind of loading in most of the cases is repeated or 

cyclic, and sustained loading is also present. The methods presented here-
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Fig. 1.4. Examples of laterally-loaded piles. 
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in can be utilized to analyze directly those cases where there are 

repeated loadings. With regard to sustained loading, the methods yield an 

excellent preliminary analysis and the geotechnical engineer must use 

some computations and a good deal of judgement to complete a solution. 

Concerning design, additional comments about the subsurface soil 

investigation and the inspection of construction are appropriate. In the 

sections giving procedures for computing p-y curves there are suggestions 

for the determination of significant soil properties. The importance of a 

soil investigation of high quality cannot be over-emphasized. In partic

ular, because piles under lateral loading derive a significant amount of 

their lateral support from soils near the ground surface, the soil inves

tigation must be especially thorough for the near-surface soils. 

The inspection of the construction is important and should be done by 

someone familiar with the design process. A number of things could be 

done by the contractor inadvertently that could have a detrimental effect 

on the performance of a pile under lateral load. 

The geotechnical engineer must give attention to factors such as 

expansive clay, negative friction, downslope movement, and changes in 

soil properties with time. These factors and many such others are not 

discussed herein. 

1.4 DESIGN ORGANIZATION 

The writer has observed that there unfortunately is sometimes a lim

ited use of the methods presented in this work because of the separation 

of responsibilities. The appropriate use of the methods re qui res the 

skills of geotechnical engineers and structural engineers, along with the 

support of computer technicians. It is inappropriate for the geotechnical 

engineer to provide data on p-y curves and not be connected further with 

the design. It is also inappropriate for the geotechnical engineer to try 

to perform an analysis of a pile without careful consideration of how the 

pile interacts with the superstructure, the work of the structural engi

neer. It is inappropriate for the structural engineer to proceed with a 

design if there are even minor changes that affect the soil response. 

Therefore, in many offices there is the need for a management deci

sion that geotechnical engineers and structural engineers will work 

closely throughout the design and construction of a project involving 
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piles under lateral loading. Such close cooperation may already be pres

ent in many offices; it is essential in the design of laterally loaded 

piles. 

1.5 FACTOR OF SAFETY 

The ordinary procedures for es tab l i shi ng an appropriate factor of 

safety will apply to the design of a single pile and the pile group under 

lateral loading. Many factors are to be considered, of course, including 

the quality of the information on loading, the quality of the soil data 

and data on other materials, the adequacy of the design methods, and the 

possible result of a failure. In regard to a failure, the designer must 

consider whether loss of life might result, a large monetary loss, or a 

minor monetary loss. 

Two aspects of a soil-structure-; nteract ion problem differentiate 

that problem from others in foundation engineering: the methodology does 

not have much experimental validation, and the problem is nonlinear. Con

cerning the nonlinear aspects, the designer must put the factor of safety 

into the load rather than into the material properties. That is, the ser

vice load must be increased by the factor of safety and computations made 

with the factored load. The computations with the service load might 

indicate a moderate deflection and bending stress while a small increase 

in load could result in a failure. Such a result is possible because 

there could be a considerable loss in soil resistance with a small 

increase in deflection. 

Concerning the adequacy of design methods, a study of the later sec

tion of this work will show that the methods are rational and validated to 

a certain extent. However, experimental data are limited. Thus, the 

designer should make computations not only with a range of loads but with 

an upper bound and with a lower bound for the soil response. These 

upper-bound and lower-bound values can probably best be established by 

taking the maximum values of soil properties that can be expected and the 

minimum values. Also, the effects of varying the parameters that are used 

in the soil-response criteria (p-y curves) can be studied. The computa

tions will yield insight into.the probable response of the pile-soil sys

tem. 

There are in general two types of failure: a failure of the pile 

material as reflected by an excessive bending moment, and a soil failure 
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as reflected by excessive deflection of a pile. However, there could be 

some applications where the limits on pile-head deflection are small and 

the allowable deflection is exceeded even if the soil is still substan

tially in the elastic range. 

There are applications of the pile under lateral loading where the 

pile carries little or no axial load (such as a support for an overhead 

sign or a breasting dolphin) and where the pile penetration is determined 

by lateral loading. Figure 1.5 shows how to deal with such a case. When a 

pile is short, the deflection of the pile at the groundline can be large 

because the bottom of the pile will deflect. As the pile penetration is 

increased, soil resistance at the bottom of the pile will increase and the 

groundline deflection will reach a limiting value where increased pene

tration will cause no decrease in groundline deflection. Thus, the 

designer will make computations for a series of pile penetrations and will 

determine a penetration that will yield an appropriate factor of safety. 

Ground line 
Deflection 

Critical Penetration 

Pile Penetration 

Fig. 1.5. Results of cnmputations where pile penetration 
is controlled by lateral loading, 
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CHAPTER 2. THE DIFFERENTIAL EQUATION 

The problem of the laterally loaded pile is similar to the 

beam-on-foundation prob 1 em. The interaction between the soil and the 

structure (pile or beam) must be treated quantitatively in the problem 

solution. The two conditions that must be satisfied for a rational analy

sis of the problem are: (1) each element of the structure must be in equi

librium and (2) compatibility must be maintained between the 

superstructure, foundation, and supporting soil. If the assumption is 

made that compatibility between the pile and the superstructure can be 

maintained by selecting appropriate boundary conditions at the top of the 

pile, the remaining problem is to obtain a solution that insures equilib

rium and compatibility of each element of the pile, taking into account 

the soil response along the pile. Such a solution can be made by solving 

the differential equation that describes the pile behavior. 

A derivation of the differential equation for a beam or a pile under 

lateral loading is presented so that the assumptions that are made can be 

understood. 

2.1 RELATION BETWEEN CURVATURE AND BENDING MOMENT 

A segment of an initially straight beam deformed by a bending moment 

is shown in Fig. 2.1 (Popov, 1952). The initially straight neutral axis, 

A-8, becomes curved in a bent beam. 

A fundamental assumption made in establishing the flexure formula is 

that plane sections initially perpendicular to the axis of the beam remain 

plane in the bent beam. The lines m-m and p-p represent two such planes. 

The extensions of these lines intersect at a point O which is the center 

for the radius of curvature p for the infinitesimal arc n-n 1. 

The line s-s2, at distance~ away from n-n 1, has been stretched due 

to bending. The extension of the line, s2-s1, is determined by construct

ing line n1-s1 parallel to n-s. Triangles non 1 and s1n1s2 are similar. 

Therefore: 

_P_ = n 
n-nl s2-s1 

n s2-s1 
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Fig. 2.1. A straight beam under bending moment 
(after Popov, 1952). 

The strain E is defined as the change in length of an element divided 

by the initial length of that element. Using this definition, the strain 

at any point x along the beam is equal to 

Substituting Eq. 2.2 into Eq. 2.3 

Using Hooke's Law, the strain of the element s-s2 is: 

where 

€ 
X E 

ox= bending stress in element s-s2 
E = modulus of elasticity. 

Combining Eqs. 2.4 and 2.5 
a 
2 = _!}_ 
E P 

or a 
X 

The flexure formula for bending is: 

a 
X 
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Combining Eqs. 2.6 and 2.7 

and 

Mn _ E11 
-1- - -p-

1 = 11... 
P El 

2.2 THE DIFFERENTIAL EQUATION OF THE ELASTIC CURVE 

(2.8) 

(2.9) 

The next step in the derivation is to obtain an expression for pin 

terms of x and y. The curvature of a line in analytic geometry is defined 

by Eq. 2 .10. 

1 
p 

= 

~ 
dx 2 

[1 + (ll] 312 
(2.10) 

In the usual cases of the bending of a beam or pile, the slope dy/dx is 

very small. Therefore, the square of the slope is a negligible quantity. 

Thus, 

(2.11) 

Finally, combining Eqs. 2.9 and 2.11 

~=~. 
EI dx 2 

(2.12) 

Eq. 2.12 is the desired differential equation. 

In applying Eq. 2.12, the pile is assumed to be vertical with the 

x-axis lying along the axis of the unloaded pile. The deflection of a 

point on the elastic curve of the pile is given by y, Fig. 2.2. Deflection 

to the right is positive. Slopes of the elastic curve at points 1 and 2 

are negative while slopes at 3 and 4 are positive. However, as indicated 

in the figure, the moment is positive in both instances. 

Other relationships which are needed, along with those already 

defined, are: 

y = deflection of the elastic curve 

¥x = S = slope of the elastic curve (2.13) 

d2 v M ;::._,,/_ = - where M = moment 
dx 2 EI ' 

(2.14) 
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d3y = ..i_ 
, where V = shear (2.15) dx 3 EI 

~=_£_ , where p 
dx 4 EI 

= soil react ion . (2.16) 

-----,----------~y 

Fig. 2.2. Segment of a deflected pile. 

2.3 DERIVATION OF THE DIFFERENTIAL EQUATION FOR THE BEAM

COLUMN 

In most instances the axial load on a laterally loaded pile is of 

such magnitude that it has a small influence on bending moment. However, 

there are occasions when it is necessary to include a term for the effect 

of axial loading in the analytical process. The derivation for the dif

ferential equation has been made by Hetenyi (1946) and is shown in the 

following paragraphs. 

Methods are presented later for the solution of the differential 
equation. When the solution involves consideration of the axial load, it 

will be necessary to employ a computer programo The program is described 
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later and offers the user an opportunity for doing stability analyses as 

well as the usual computations of pile behavior. It should be noted at 

this point that the interaction between behavior under lateral loading and 

under axial loading can normally be uncoupled because the axial load is 

usually almost constant over the portion of the pile where bending moment 

is significant. 

It will now be assumed that a bar on an elastic foundation is sub

jected not only to the vertical loading, but also to the pair of horizon

tal compressive forces Px acting in the center of gravity of the end cross

sections of the bar. 

If an infinitely small unloaded element, bounded by two verticals a 

distance dx apart, is cut out of this bar (see Fig. 2.3), the equilibrium 

of moments (ignoring second-order terms) leads to the equation 

(2 .17) 

or 

~+P ~-V =O. ux x dx v 
(2.18) 

T 
y 

X 

+ 
y 

dx 

l .,,,Vn 

Vv• dVv 
-vv 

M + dM 
y + dy P. 

P = -E• y 
X 

Fig. 2. 3. Element from beam-column. 
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Differentiating Eq. 2.18 with respect to x, the following equation is 

obtained 

d2M + p ~ - dVv = 0 
dx 2 x dx 2 dx • 

The following identities are noted: 

dV 
V -= p 

dx 

p = -Esy • 

And making the indicated substitutions, Eq. 2.19 becomes 

EI f2_ + P f:.l + E y = 0. 
dx4 x dx2 s 

(2.19) 

(2.20) 

The direction of the shearing force V is shown in Fig. 2.3. The 
V 

shearing force in the plane normal to the deflection line can be obtained 

as 

V = V cos S - P sin S. 
n V X 

Because Sis usually small, cos S = 1 and sin S = 
(2.21) 

Qt. 
tan S = dx . Thus, Eq. 

2.22 is obtained. 

V = V - P ~ n v x dx 
(2.22) 

Vn will mostly be used in computations but Vv can be computed from Eq. 

2.22 where dy/dx is equal to the rotation S. 

2.4 SUMMARY 

The assumptions that must be made in deriving the differential 

equations are shown below: 

(1) The pile is straight and has a uniform cross section. 

(2) The pile has a longitudinal plane of symmetry; loads and 

reactions lie in that plane. 

(3) The pile material is homogeneous. 

(4) The proportional limit of the pile material is not 

exceeded. 

(5) The modulus of elasticity of the pile material is the same 
for tension and compression. 
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(6) Transverse deflections of the pile are small. 

(7) The pile is not subjected to dynamic loading. 

(8) Deflections due to shearing stresses are negligible. 

The assumption of a uniform cross section can be eliminated by 

rewriting the differential equation or by solving sets of simultaneous 

differential equations. Also, most of the other assumptions can be elimi

nated if one wishes to modify the differential equation. 

The sign conventions that are employed are shown in Fig. 2.4. For 

ease of understanding, the sign conventions are presented for a beam that 

is oriented like a pile. A solution of the differential equation yields a 

set of curves such as shown in Fig. 2.5. 

Techniques for the solution of the differential equation will be dis
cussed in a later chaoter. 

2.5 EXAMPLE EXERCISE 

As an example of the solution of the second-order differential 

equation, Eq. 2.19, the problem of a simply-supported beam with uniform 

loading will be considered. The desired solution is an expression for y. 

Cutting a free body from the beam shown in Fig. 2.6 at some point x 

along the beam and solving for the moment in the beam where it is cut, the 

following expression results: 

Substituting expression for moment from Eq. 2.23 into Eq. 2.12 

d2y = J_ ( ~ - ~) 
W EI 2 2 • 

Integrating Eq. 2.24 

~ - 1- ·(plx2 E) 
dx - EI 4 - 6 + Cl· 

From symmetry, the slope is zero at the mid-point of the beam, 

~ = 0 at X = 
2
L 

dx 

and this enables the constant of integration c1 to be evaluated. 

expressions in Eq. 2.26 to solve Eq. 2.25 

1 ( nL L 2 n L 3 
) O=- .c:..=.. __ .c. __ +C 

EI 4 4 6 8 1 • 
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(2.25) 

(2.26) 

Using 

( 2. 27) 
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Pb ----Load Shear Moment Slope Deflection 
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Positive Positive Positive Positive Positive 
Load Shear Moment Slope Deflection 

{a) ( b) ( C) (d) ( e) 

Fig. 2.4. Sign conventions. 

y M=EI~ V=EI~ 

Fig. 2.5. Form of the results obtained from a complete solution. 

18 



~ . . - ' -
' . y 

. 
pl 

~ p( Negative) -2 ' 
,J 

. 
~ 

- l -. 
-
~ 

--
- 'i .... - ~ 

pl 
2" 

' ~ 

X 

Fig. 2.6. Section of a beam (pile) with uniform load. 

or 

-~ . Cl - 24EI 

(2.28) 

Substituting expression for c1 into Eq. 2.25 

-91. = l_ (pLx2 _ ~) _ __el:__ 
dx EI 4 6 24EI 

(2.29) 

Integrating Eq. 2.29 

Y = E\ ( ~ • \
3 

- p2x4
4 

) - l4LE
3
I • x + C 2 · (2.30) 

To solve for c2 the condition is employed that y = 0 at x = O. Using 
these boundary conditions, Eq. 2.30 becomes 

1 o = IT ( o - o) - o + c2; c2 = o. (2.31) 

Finally, Eq. 2.30 becomes 

y = ffiJ (2Lx 3 - x4 - L3x). (2.32) 

Eq. 2.32 is the desired solution. 
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2. 7 EXERCISES 

2.1 Use the method in Section 2.5 and solve each of the following 

problems of a cantilever beam: (a) a force at the free end, (b) a moment 

at the free end, (c) a rotation at the free end, and (d) a deflection at 

the free end. 

2.2 Repeat problem 2.1 with the EI of the half of the beam at the 

fixed end being twice as great as the EI of the half of the beam at the 

free end. 

20 



CHAPTER 3. SOIL RESPONSE 

As noted earlier, the soil response is characterized as a set of dis

crete mechanisms as suggested by Winkler (1867). The discrete mechanisms 

indicate that the soil response at a point is not dependent on pile 

deflection elsewhere; thus, a continuum is not perfectly modelled. Howev

er, the continuum could be modelled properly if information were available 

concerning the interaction effects from one soil slice to the next. Each 

discrete mechanism could then represent a family of curves, with the 

appropriate curve in the family at a point selected to reflect the effects 

from the soil above and below that point. The present state-of-the-art 

concerning the response of the soil to a deflected pile does not allow or 

justify an approach more sophisticated than that suggested by the set of 

discrete mechanisms. Futhermore, a small amount of unpublished exper

imental data suggests that the soil response at a point is unaffected by 

those changes in deflected shape that can be achieved by a 1 teri ng the 

rotational restraint at the pile head by any practical amount. 

Proceeding with the concept that the soil response can be treated by 

employing a set of mechanisms, a discussion of the physical meaning of one 

of these mechanisms is helpful. Figure 3.la is a view of a pile after it 

has been installed and before any lateral load has been applied. The 

behavior of the soil at the depth x1 is to be considered. The stress dis

tribution against the pile, before any lateral loading, is shown in Fig. 

3.lb. The assumption implied by the figure is that the pile has been dri

ven without any residual deflection and bending moment; thus, there is no 

lateral force against the pile at the depth x1 or elsewhere. It is 

assumed that a lateral load is now applied to the pile and that it is 

caused to deflect an amount y1 at the depth x1. The stress distribution 

is altered, of course, and that shown in Fig. 3. le could represent the new 

distribution. 

The integration of the stress distribution shown in Fig. 3.lc would 

yield the force per unit length along the pile, p1. The quantity pis 

defined as the soil reaction or soil resistance. It acts in opposition to 

the deflection y; hence, p and y are opposite in sign. If one were able to 

predict the stress distribution for a range of deflections, the successive 

integrations would yield p-values corresponding toy-values, allowing the 
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p-y curve to be developed for the depth x1. Similar exercises at other 

depths would yield a family of p-y curves. 

With regard to p-y curves, the assumptions are made (1) that there is 

no shear stress at the surface of the pile parallel to its axis (the 

direction of the soil resistance is perpendicular to the axis of the pile) 

and (2) that any lateral resistance or moment at the base of the pile can 

be accounted for by a p-y curve at the side of the pile near the base. Any 

errors due to these assumptions are thought to be negligible. 

3.1 REACTION OF SOIL TO LATERAL DEFLECTION OF PILE 

As might be expected, from the definition of a p-y curve given in the 

previous section, the soil resistance p is a nonlinear function of the 

deflection y. A family of p-y curves, plotted in the appropriate quad

rants, is shown in Fig. 3.2a. That the curves are plotted in the second 

and fourth quadrants is merely an indication that the soil resistance pis 

opposite in sign to the deflection y. While the p-y curves in Fig. 3.2a 

are only illustrative, they are typical of many such families of curves in 

that the initial stiffness and the maximum resistance increase with depth. 

A typical p-y curve is shown in Fig. 3.2b; it is plotted in the first 

quadrant for convenience. The curve is strongly nonlinear, changing from 

an initial stiffness E . to an ultimate resistance p . As is evident, the 
Sl U 

soil modulus E is not a constant except for a small range of deflections. s 
The three factors that have the most influence on a p-y curve are the 

soil properties, the pile geometry, and the nature of loading. The corre

lations that have been developed for predicting soil response are based on 

the best estimate of the properties of the in situ soil with no adjustment 

for the effects of the method of installation on soil properties. The 

logic supporting this approach is that the effects of pile installation on 

soil properties are principally confined to a zone of soil close to the 

pile wall, while a mass of soil of several diameters from the pile is 

stressed as lateral deflection occurs. There are instances, of course, 

where the method of pile installation must be considered; for example, if 

a pile is jetted into place, a considerable volume of soil could be 

removed with a significant effect on the soil response. 

The principal dimension of a pile affecting the soil response is its 

diameter. All of the recommendations for developing p-y curves include a 
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term for the diameter of the pile; if the cross-section of the pile is not 

circular, the width of the pile perpendicular to the direction of loading 

is usually taken as the diameter. 
The p-y curves are strongly responsive to the nature of the loading. 

Recommendations have been developed for predicting curves for short-term 

static loading and for cyclic (or repeated) loading. However, there are 

no current recommendations for the cases where the loading is dynamic or 

sustained. Recommendations for p7y curves where the inertia of the soil 

is considered are needed because of the desirability of developing 

rati ona 1 methods of analyzing pile-supported structures that are sub

jected to earthquake loadings. With regard to sustained loadings, as from 

a retaining wall, it is unlikely that criteria can be developed for pre

dicting p-y curves. The problem must be solved as a whole, taking into 

account the three-dimensional consolidation that will occur as well as the 

time-dependent changes in loading. From the standpoint of practice, the 

engineer can probably estimate some additional amount of deflection that 

will occur if he has the earth pressure distribution along a pile at the 

beginning of the loading period. 
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3.2 USE OF THEORY OF ELASTICITY TO DETERMINE SOIL BEHAVIOR 

The theory of elasticity is of limited use in solving the problem of 

the response of soil to pile deflection because experience has shown that 

the soil-response curve is linear only for small deflections of the pile. 

In spite of this limitation, some useful contributions, based essentially 

on the theory of el ast i city, have been made. The papers of Skemp ton 

(1951), Terzaghi (1955), and McClelland and Focht (1958) have been 

selected for review. 

Skempton 

The author states that "simple theoretical considerations" were 

employed to develop a prediction for load-settlement curves for footings. 

The ,theory can be employed to obtain the p-y curve for a pile if it is 

assumed that the depth is such that the curve is not affected by the free 

surface of the soil, that the state of stress is the same in the horizon

tal and vertical directions, and that the soil is isotropic. 

The mean settlement of a foundation, p, of width b, on the surface of 

a semi-infinite solid, based on the theory of elasticity, is given by the 

following expression. 

p = qbl 
p 

where 

1-\)2 
-E-

q = foundation pressure, 

I = influence value, 
p 
v = Poisson's ratio of the solid, and 

E = Young's moqulus of the solid. 

(3.1) 

With regard to Eq. 3.1, Poisson's ratio can be assumed to be equal to 

1/2 for saturated clays if there is no change in water content and I can 
p 

be taken as TI/4 for a rigid circular footing on the surface. Furthermore, 

for a rigid circular footing, the failure stress qf may be taken as equal 

to 6.8c, where c is the undrained shear strength. Making the substi

tutions indicated, and setting p equal to pl for the particular case 

Skempton 

01 4 q 

b = E/c = qf 
noted that the 

(3.2) 

influence value I decreases with depth below the 
p 

surface but the bearing capacity factor increases; therefore, as a first 

approximation Eq. 3.2 is valid for any depth. 

25 



In an undrained compression test the axial strain is given by the 

following equation. 

(al - a3) 
E: = 

E 
(3.3) 

where 

E = Young's modulus at the stress (a1 - a3). 

For saturated clays with no water content change, 'Eq. 3.3 may be 

rewritten as follows. 

where 

2 
E: = --

E/c 

(al - a3) 

(al - a3)f 

(a1 - a3)f = failure stress. 

(3.4) 

It may be noted by comparing Eqs. 3.2 and 3.4 that, for the same 

ratio of applied stress to ultimate stress, the strain in the footing test 

(or pile under lateral loading) is related to the strain in the laboratory 

compression test by the following equation. 

pl 
- = 2E: 
b 

(3.5) 

Skempton's arguments based on the theory of elasticity and also on the 

actual behavior of full-scale foundations led to the following conclu

sion: 
Thus, to a degree of approximation (20 percent) com
parable with the accuracy of the assumptions, it may 
be taken that Eq. 3.5 applies to a circular or any 
rectangular footing. 

While the analytical approach employed by Skempton involves numerous 

approximations, the method has gained some acceptance because of the 

experimental evidence presented by Skempton and others (Reese, et al., 

1975). 

Skempton stated that the failure stress for a footing reaches a maxi

mum value of 9c. If one takes that value of a pile in saturated clay under 

lateral loading, Pu becomes 9cb. A p-y curve could be obtained, then, by 

taking points from a laboratory stress-strain curve and using Eq. 3.5 to 

obtain deflection and 4.5 a~b to obtain soil resistance. The procedure 

would presumably be val id at depths beyond where the presence of the 

ground surface would not reduce the soil resistance. Skempton did not 
suggest that his ideas could be used in obtaining p-y curves and no sug-
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gestions in that regard are made here. However, the concepts employed by 

Skempton are useful and of interest. 

Terzaghi 

While Skempton presented an analytical approach for the prediction 

of curves giving the deflection of a footing as a function of bearing 

stress, Terzaghi's approach is much less direct. He does call on princi

ples of mechanics in his presentation; however, he fails to give a 

step-by-step procedure for his derivations and he also fails to cite any 

experimental evidence that would verify his recommendations. One would 

suppose that Terzaghi has used the theory of el ast i city freely in his 

development of the recommended coefficients and that he had some exper

imen~al evidence at his disposal but that he chose not to cite his refer

ences for his own reasons. While the paper has some obvious shortcomings, 

the numerical recommendations for soil response are summarized here 

because of their hi stori cal importance and because the recommendations 

continue to have value. 

A reference to an incident in Terzaghi's later years is pertinent. 

He was one of the principal speakers at the Eighth Texas Conference on 

Soil Mechanics and Foundation Engineering in the early Fall of 1956 where 

he read his notable paper, "Submarine Slope Failures. 11 Professor Hudson 

Matlock and his colleagues were engaged in running the first field tests 

of a fully-instrumented, laterally loaded pile at Lake Austin. Terzaghi 

visited the site, expressed an interest in the testing program, but had no 

particular suggestions to make. His paper on subgrade reaction had just 

been published and Terzaghi remarked that he was not particularly proud of 

the paper and that he had only agreed to publish it at the urging of a num

ber of his acquaintances. 

Terzaghi's recommendations for the coefficient of subgrade reaction 

(p-y curves) for stiff clay were based on his notion that the deforma

tional characteristics of stiff clay are "more or less independent of 

depth. 11 Thus, he proposed, in effect, that the p-y curves should be con

stant with depth. He further proposed that the ratio between p and y 

should be constant and defined by the symbol aT. Therefore, his family of 

p-y curves for stiff clay consists of a series of straight lines, all of 

the same slope, passing through the origin of the coordinate system. 

Terzaghi recognized, of course, that the pile could not be deflected 
to an unlimited extent with a linear increase in soil reaction. He stated 
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that the linear relationship between p and y was valid for values of p 

that were smal 1 er th~n about one-half of the ultimate bearing stress. 

Table 3.1 presents Terzaghi 1 s recommendations for stiff clay. The 

units have been changed to reflect current practices. The values of ~T' 

it should be noted, are independent of pile diameter. 

TABLE 3.1. TERZAGHI'S RECOMMENDATIONS FOR SOIL MODULUS aT 
FOR LATERALLY LOADED PILES IN STIFF CLAY. 

Consistency of Clay Stiff Very Stiff Hard 

1-2 > 4 qu, T/sq ft 

a'T' lb/sq in. 460-925 

2-4 

925-1850 1850-up 

With regard to sand, Terzaghi based his recommendations on the fact 

that the stiffness of the sand increases with confining stress (or with 

depth). However, he recommended, as with stiff clay, that the soil 

resistance should be a linear function of y. Again, as with clay he stip

ulated that his recommended values were valid only for a soil reaction 

that was no more than one-half of the maximum bearing stress. 

Thus, the family of p-y curves recommended by Terzaghi for sand con

si~ts of a series of straight lines, with the slope of the lines being 

zeto at the ground surface and increasing linearly with depth. Because 

Es, the soil modulus is equal to p/y 

where 

E = kx s 

k = constant giving variation of soil modulus 

with depth, and 

x = depth below ground surface. 

Table 3.2 shows recommendations fork. 
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TABLE 3.2. TERZAGHI'S RECOMMENDATIONS FOR VALUES OF k FOR 
LATERALLY LOADED PILES IN SAND. 

Relative Density of Sand 

Dry or moist, k, lb/cu in. 

Submerged sand, k, lb/cu in. 

McClelland and Focht 

Loose 

3. 5-10.4 

2.1-6.4 

Medium 

13-40 

8-27 

Dense 

51-102 

32-64 

The paper by these authors has considerable importance for several 

reasons: it is the first paper to report experimental p-y curves from a 

full-scale, instrumented, pile-load test, and it shows conclusively that 

the soil modulus is not a soil property but is a functjon of depth and pile 

deflection. While the paper is not strongly based on the theory of elas

ticity, it is included in this section because it closely parallels 

Skempton I s approach and because stress-strain curves from 1 aboratory 

tests are employed in obtaining p-y curves. 

The paper recommends the performance of consolidated-undrained tri

axial tests with the confining pressure equal to the overburden pressure. 

To obtain values of the soil resistance p from the stress-strain curves, 

the authors recommend the following equation: 

"where 
p = 5.5 boll 

oti = deviator stress (o1 - o3) 

b = pile diameter • 

( 3. 7) 

Equation 3.7 agrees well with Skempton 1 s recommendations for the case 

where the depth divided by the pile diameter is about three or more. As 

noted earlier, Skempton proposed a factor of 4.5 instead of the 5.5 shown 

in Eq. 3.7. 

To obtain va 1 ues of pile deflection y from stress-strain curves, 

McClelland and Focht propose 

y = 0. 5 b£. (3.8) 

Skempton 1 s corresponding equation suggests a value of 2 rather than 0.5. 

Part of the difference in these two numbers probably derives from the dif-
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ference in the two sets of experiments. Skempton's studies were for foot

ings that were at or near the ground surface; these footings could be 

expected to have more relative deflection than a segment of pile that is 

for the most part at some distance below the ground surface. 

3.3 USE OF SOIL MODELS TO DETERMINE SOIL BEHAVIOR 

The preceding section has presented solutions employing the theory 

of elasticity, or related approaches, to obtain the response of the soil 

to the lateral deflection of a pile. This section reviews the use of soil 

models to obtain expressions that will indicate approximately the ulti

mate resistance against a pile that can be developed near the ground sur

face and at some depth below the ground surface. 

Soil Models for Saturated Clay 

The assumed model for estimating the ultimate soil resistance near 

the ground surface is shown in Fig. 3.3 (Reese, 1958). The force Fp is 

F = c bH [tan a + (l+K) cot a] 
p a C C 

+ 1/2obH2 + c H2 sec a (3.9) 
a C 

where 

C = average undrained shear strength a 
K = a reduction factor to be multiplied by C to yield the a 

average sliding stress between the pile and the stiff 

clay, and 

0 = average unit weight of soil. 
(the other terms are defined in the figure) 

It is possible to take the partial derivative of Eq. 3.9 with respect to 

the angle a and set it equal to zero to find the angle at which the 

equation is minimized. However, as an approximation the angle a is taken 
. C 

as 4S' and K is assumed equal to zero. Differentiation of the resulting 

expression with respect to H yields an expression for the ultimate soil 

resistance near the ground surface as follows: 

( p ) = 2c b + obH + 2. 83 c H • u ca a a (3.10) 
It can be reasoned that, at some distance below the ground surface, 

the soil must flow around the deflected pile. The model for such movement 

is shown in Fig. 3.4a. If it is assumed that blocks 1, 2, 4, and 5 fail by 

shear and that block 3 develops resistance by sliding, the stress condi

tions are represented by Fig. 3.4b. By examining a free body of a section 

of the pile, Fig. 3.4c, one can conclude that the ultimate soil resistance 
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Fig. 3.3. Assumed passive wedge-type failure for clay 
(a) shape of wedge 
(b) forces acting on wedge. 

at depth is: 

( p ) b = 11 cb • ( 3 .11 ) 
U C 

Equations 3.10 and 3.11 are, of course, approximate but they do indi-

cate the general form- of the expressions that give the ultimate soil 

resistance along the pile. The equations can be solved simultaneously to 

find the depth at which the failure would change from the wedge type to 

the flow-around type. 

Soil Models for Sand 

The soil model for computing the ultimate resistance near the ground 

surface for sand is shown in Fig. 3.5a (Reese, Cox, and Koop, 1974). The 
total lateral force Fpt (Fig. 3.5c) may be computed by subtracting the 

active force Fa' computed using Rankine theory, from the passive force Fp' 
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(a) section through pile (b) Mohr-Coulomb diagram 
(c) forces acting on section of pile. 

computed from the model. The force F P is computed assuming that the 

Mohr-Coulomb failure condition is satisfied on planes ADE, BCF, and AEFB. 

The directions of the forces are shown in Fig. 3.5b. No frictional force 

is assumed to be acting on the face of the pile. The equation for Fpt is 

as fol lows. 

(3.12) 

32 



where 
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Assumed passive wedge-type failure of pile in sand 
(a) general shape of wedge (b) forces on wedge 
(c) forces on pile. 

K = coefficient of earth pressure at rest 
0 

K = minimum coefficient of active earth pressure. a 
The ultimate soil resistance near the ground surface per unit length 

of the pile is obtained by differentiating Eq. 3.12. 

[ 
K H tan ¢ s i n f3 tan f3 

(p) - - H O + ----,---. (b + H tans tana) u s a - ( tan ( s- ¢) c o s as tan ( 8- ¢ ) s 

(3.13) 
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Bowman (1958) suggested values of a from ¢/3 to ¢/2 for loose sand up to¢ s 
for dense sand. The value of Sis approximated as follows. 

S = 45 + i (3 .14 )_ 
2 

The model for computing the ultimate soil resistance at some distance 

below the ground surface is shown in Fig. 3.6a. The stress o1, at the back 

of the pile must be equal to or larger than the minimum active earth pres

sure; if not, the soil could fail by slumping. This assumption is based 

on two-dimensional behavior, of course, and is subject to some uncertain

ty. However, the assumption should be adequate for the present purposes. 

Assuming the states of stress shown in Fig. 3.6b, the ultimate soil 

resistance for horizontal flow around the pile is 

(p ) b = K boH (tan 8 S - 1) + K boH tan¢ tan 4 S. · (3.15) u s a o 
As in the case for clay, Eqs. 3.14 and 3.15 are approximate but they 

serve a useful purpose in indicating the form, if not the magnitude, of 

the ultimate soil resistance. The two equations can be solved simultane

ously to find the approximate depth at which the soil failure changes from 

the wedge type to the flow-around type. 

3.4 EXPERIMENTAL METHODS FOR OBTAINING SOIL RESPONSE 

CURVES 

The above paragraphs describe methods for obtaining soil response 

based primarily on theory. (An exception is the method of McClelland and 

Focht that was based on some experimental results:) The strategy that has 

been employed for obtaining design criteria is to make use of the theore

tical methods, to obtain p-y curves from full-scale field experiments, and 

to derive such empirical factors as necessary so that there is close 

agreement between results from adjusted theoretical solutions and those 

from experiments. Thus, an important procedure is obtaining experimental 

p-y curves. 1 

Soil Response from Direct Measurement 

A number of attempts have been made to make direct measurement of p 

and y in the field. Measuring the deflection involves the conceptually 

simple process of sighting down a hollow pipe from a fixed position at 

scales that have been placed at intervals along the length of the pile. 

The method is cumbersome in practice and has not been very successful. 

The measurement of the soil resistance directly involves the design 
of an instrument that will integrate the soil stresses at a point along 
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Fig. 3.6. Assumed mode of soil failure by lateral flow around a pile 
in sand 
(a) section through the pile 
(b) Mohr-Coulomb diagram representing states of stress 

of soil flowing around a pile. 
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the pile. The design of such an instrument has been proposed but none has 

yet been built. Some attempts have been made to measure the soil pressure 

at a few points around the exterior of a pile with the view that the soil 

pressures at other points can be estimated. This method has met with lit

tle success. 

Soil Response from Experimental Moment Curves 

Almost all of the successful experiments that yielded p-y curves have 

involved the measurement of bending moment by the use of electrical 

resistance strain gauges. The deflection can be obtained with consider

able accuracy by two integrations of the moment curves. The deflection 
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and the slope at the groundline have to be measured accurately and it is 

helpful if the pile is long enough so that there are at least two points 

of zero deflection along the lower portion of the pile. 

The computation of soil resistance along the length of the pile 

involves two differentiations of a bending moment curve. Matlock (1970) 

made extremely accurate measurements of bending moment and was able to do 

the differentiations numerically. However, most other investigators have 

fitted analytic curves through the points of experimental bending moment 

and have performed the differentiations mathematically. 

With families of curves showing the distribution of deflection and 

soil resistance, p-y curves can be plotted. A check can be made of the 

accuracy of the analyses by using the experimental p-y .curves to compute 

bending-moment curves. The computed bending moments should agree closely 

with those from experiment. 

Nondimensional Methods for Obtaining Soil Response 

Reese and Cox (1968) described a method for obtaining p-y cuves for 

those instances where on,.ly pile-head measurements were made during lat

eral loading. They noted that nondimensional curves can be obtained for 

many variations of soil modulus with depth. Equations for the soil modu

lus involving two parameters were employed, such as shown in Eqs. 3.16 and 

3.17. 

Es= kl~ k2x 
E = k X 

s 1 

(3.16) 

(3 .17) 

From measurement of pile-head deflection and rotation at the groundline, 

the two parameters were computed for a given applied load and moment. 

With an expression for soil modulus for a particular load, the soil 

resistance and deflection along the pile were computed. 

The procedure was repeated for each of the applied loadings and p-y 

curves were plotted from the computem families of curves of deflection and 

soil resistance. While the method is approximate, the p-y curves computed 

in this fashion do reflect the measured behavior of the pile head. Soil 

response derived from a sizeable number of such experiments can add sig

nificantly to the existing information. 

As previously indicated, the major field experiments that have led to 

the development of the current criteria for p~y curves have involved the 

acquisition of experimental moment curves. However, nondimensional meth

ods of analyses have assisted in the development of p-y curves in some 

instances. 
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3.5 RECOMMENDATIONS FOR p-y CURVES FOR CLAYS 

Three major experimental programs were performed for piles in clays 

to yield the criteria which follow. In each case the piles were subjected 

to short-term static loads and to repeated (cyclic) loads. The exper

imental program is described briefly in the paragraphs that follow, a 

step-by-step procedure is given for computing the p-y curves, recommen

dations are given for obtaining the necessary data on soil properties, and 

example curves are presented. 

The final portion of this section on clays presents a method that has 

been developed for predicting p-y curves in clays of any shear strength. 

This 11 unified 11 method is based on all of the major experiments in clay 

below the water table. 

As noted in the following sections, repeated loading of the clay has 

a pronounced effect on the soil response, particularly when water covers 

the ground surface. The loss of resistance from repeated loading is due 

to two effects: the breakdown of the structure of the clay (remolding) 

and scour. The remolding is a result of the repeated strains that occur 

due to the deflection of the pile. The scour occurs when the pile 

deflects enough to cause a gap to remain between pile and soil when the 

load is removed. Water will flow into the gap and will be ejected on the 

next application of load. The water in most cases will move out at a high 

velocity and carry out particles of clay. 

If the clay is above the water table, only the first of the two 

effects will be present. Therefore, the recommendations for p-y curves 

that are presented are dependent on the position of the water table. 

Response of Soft Clay below the Water Table 

Field Experiments. Matlock (1970) performed lateral load tests 

employing a steel pipe pile that was 12.75 in. in diameter and 42 ft long. 

It was driven into clays ne.ar Lake Austin that had a shear strength of 

about 800 lb/sq ft. The pile was recovered, taken to Sabine Pass, Texas, 

and driven into clay with a shear strength that averaged about 300 lb/sq 

ft in the significant upper zone. 

Recommendations for Computing p-y Curves. The following procedure 

is for short-term static loading and is illustrated by Fig. 3.7a. 

1. Obtain the best possible estimate of the variation with 

· depth of undrained shear strength c and submerged unit 

weight r•. Also obtain the values of e: 50 , the strain corre-
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Fig. 3.7. Characteristic shapes of the p-y curves 
for soft clay below the water table 
(a) for static loading 
(b) for cyclic loading 

(from Matlock, 1970). 

sponding to one-half the maximum principal-stress differ
ence. If no stress-strain curves are available, typical 

values of t 50 are given in Table 3.3. 

2. Compute the ultimate soil resistance per unit length of 
pile, using the smaller of the values given by equations 

below. 
p = [3 + L x +'1. x] cb 

u c. b 
Pu = 9 cb 
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TABLE 3,3. REPRESENTATIVE VALUES OF s 50 • 

Consistency of Clay 

Soft 

Medium 

Stiff 

(Also see Tables 3.5 and 3.6) 

where 

0.020 

0.010 

0.005 

r• = average effective unit weight from ground surface 

to p-y curve 

x = depth from ground surface to p-y curve 

c = shear strength at depth x 

b = width of pile. 

Matlock (1970) states that the value of J was determined 

experimentally to be 0.5 for a soft clay and about 0.25 for 

a medium clay. A value of 0.5 is frequently used for J. 

The value of p is computed at each depth where a p-y curve 
u 

is desired, based on shear strength at that depth. 

3. Compute the deflection, y50 , at one-half the ultimate soil 

resistance from the following equation: 

y50 = 2.5 E 50b. (3.20) 

4. Points describing the p-y curve are now computed from the 

following relationship. 
1 

..E._ = 0.5 (_'L) 3 
Pu Y50 

(3.21) 

The value of p remains constant beyond y = 8y50 . 

The following procedure is for cyclic loading and is illustrated in 

Fig. 3.7b. 

1. Construct the p-y curve in the same manner as for short-term 

static loading for values of p less than 0.72p . 
u 
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2. Solve Eqs. 3.18 and 3.19 simultaneously to find the depth, 

xr, where the transition occurs. If the unit weight and 

shear strength are constant in the upper zone, then 

6cb 
X = -----

r ( y' b + Jc) 
(3.22) 

If the unit weight and shear strength vary with depth, the 

value of xr should be computed with the soil properties at 

the depth where the p-y curve is desired. 

3. If the depth to the p-y curve is greater than or equal to 

x , then p is equal to 0. 72p for a 11 values of y greater r u 
than 3y50 . 

4. If the depth to the p-y curve is less than xr, then the val

ue of p decreases from 0.72pu at y = 3y50 to the value given 

by the following expression at y = 15y50 . 

p = 0.72pu ( :r) 

The value of p remains constant beyond y = 15y50 . 

(3.23) 

Recommended Soil Tests. For determining the various shear strengths 

of the soil required in the p-y construction, Matlock (1970) recommended 

the following tests in order of preference: 

soil. 

1. in-situ vane-shear tests with parallel sampling for soil 

identification, 

2. unconsolidated-undrained triaxial compression tests having 

a confining stress equal to the overburden pressure with c 

being defined as half the total maximum principal stress 

difference, 

3. miniature vane tests of samples in tubes, and 
4. unconfined compression tests. 

Tests must al so be performed to determine the unit weight of the 

Example Curves. An example set of p-y curves was computed for soft 

clay for a pile with a diameter of 48 in. The soil profile that was used 

is shown in Fig. 3.8. The submerged unit weight was assumed to be 20 lb/cu 

ft at the mudline and 40 lb/cu ft at a depth of 80 ft and to vary linearly. 

In the absence of a stress-strain curve for the soil, ESO was taken as 0.01 
for the full depth of the soil profile. The loading was assumed to be cyclic. 
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Fig. 3.8. Soil profile used for example p-y 
curves for soft cla~ 

The p-y curves were computed for the following depths below the mud

line: 0, 1, 2, 4, 8, 12, 20, 40, and 60 ft. The plotted curves are shown 

in Fig. 3.9 (curves for O and 1 ft too close to axis to be shown). 

Response of Stiff Clay below the Water Table 

Field Experiments. Reese, Cox, and Koop (1975) performed lateral 

load tests employing steel-pipe piles that were 24 in. in diameter and 50 

ft long. The piles were driven into stiff clay at a site near Manor, 

Texas. The clay had an undrained shear strength ranging from about 1 T/sq 

ft at the ground surface to about 3 T/sq ft at a depth of 12 ft. 

Recommendations for Computing p-y Curves. The following procedure 

is for short-term static loading and is illustrated by Fig. 3.10. 

1. 

2. 

3. 

Obtain values for undrained soil shear strength c, soil 

submerged unit weight r•, and pile diameter b. 

Compute the average undrained soil shear strength c over a 
the depth x. 

Compute the ultimate soil resistance per unit length of 

pile using the smaller of the values given by the equation 

below: 
Pct= 2cab + y'bx + 2.83 cax, 
Ped = 11 cb. 

41 

(3.24) 
(3.25) 



~ 

.5 

' .a 

--------------------60 ft 

1500 

--------------------40ft 

~1000 
Q) 
u 
C 
C -.!!! 
Ill 
Q) 

a:: 
·o 
(/) 

,,..----------------20ft 

5 10 

Deflection, y(in.) 

Fig. 3.9. Example p-y curves for soft clay below water table, 
Matlock criteria, cyclic loading. 

4. Choose the appropriate value of As from Fig. 3.11 for the 

particular nondimensional depth. 

5. Establish the initial straight-line portion of the p-y 

curve: 
p = ( kx) y. ( 3 • 2 6) 

Use the appropriate value of k or k from Table 3.4 fork. 
S C 

6. Compute the following: 

Y50 = e50b. (3.27) 
Use an appropriate value of e 50 from results of laboratory 

tests or, in the absence of laboratory tests, from Table 

3.5. 

7. Establish the first parabolic portion of the p-y curve, 

using the following equation and obtaining p from Eqs. 
C 

3.24 or 3.25. 

(...L) 0.5 
Y50 

(3.28) 

Equation 3.28 should define the portion of the p-y curve 

42 



TABLE 3.4. REPRESENTATIVE VALUES OF k FOR STIFF CLAYS. 

Average Undrained Shear Strength* 

T/sq ft 

0. 5-1 1-2 2-4 

ks (Static) lb/cu in. 500 1000 2000 

kc (Cyclic) lb/cu in. 200 400 800 

* The average shear strength should be computed from the shear 

strength of the soil to a depth of 5 pile diameters. It 

should be defined as half the total maximum principal stress 

difference in an unconsolidated undrained triaxial test. 

TABLE 3.5. REPRESENTATIVE VALUES OF s 50 FOR STIFF CLAYS 

s 50 ( in. Ii n. ) 

Average Undrained Shear Strength 

T/sq ft 

0.5-1 

0.007 
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1-2 

0.005 

2-4 

0.004 
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Characteristic shape of p-y curve for static loading 
in stiff clay below -the water table 
(after Reese, Cox, Koop, 1975). 

from the point of the intersection with Eq. 3.26 to a point 

where y is equal to Asy50 (see note in step 10). 
8. Establish the second parabolic portion of the p-y curve, 

P = 0.5pc (YY ) 0.5 - o.055pc ( Y ~ :sY5o) 1.25 • 
50 s 50 ) (3.29) 

Equation 3.29 should define the portion of the p-y curve 

from the point where y is equal to AsYso to a point where y 
is equal to 6Asy50 (see note in step 10). 

9. Establish the next straight-line portion of the p-y curve, 
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Fig. 3.11. Values of constants As and Ac· 

Equation 3.30 should define the portion of the p-y curve 

from the point where y is equal to 6Asy50 to a point where y 

is equal to 18Asy50 (see note in step 10). 

10. Establish the final straight-line portion of the p-y curve, 

p = 0.5pc(6As)
0

•
5 

- 0.411pc - 0.75pCAS (3.31) 
or 

p = p (1.225 IA - 0. 75A - 0.411) . 
C S S 

(3.32) 

Equation 3.32 should define the portion of the p-y curve 

from the point where y is equal to 18Asy50 and for all larg

er values of y (see following note). 

Note: The step-by-step procedure is outlined, and Fig. 

3.10 is drawn, as if there is an intersection between Eqs. 
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3.26 and 3.28. However, there may be no intersection of Eq. 

3.26 with any of the other equations or, if no intersection 

occurs, Eq. 3.26 defines the complete p-y curve. 

The following procedure is for cyclic loading and is illustrated in 

Fig. 3.12. 

~ 

~ 
C 
0 
1ii ·.;; 
Q) 

a:: 

---- --

0 
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. [,_,Y .. 0.45Yp 1
2

•

15 1 
p" A, Pc 0.45Yp 

E 0.085pc ,c•----
Yeo 

l.8yp 

Deflection, y ( in.) 

Figo 3.12. Characteristic shape of p-y curve for cyclic loading 
in stiff clay below water table 
(after Reese, Cox, Koop, 1975). 

1. Steps 1, 2, 3, 5, and 6 are the same as for the static case. 

4. Choose the appropriate value of Ac from Fig. 3.11 for the 

particular nondimensional depth. 

Compute the following: 
yp = 4.1 A

5
y

50
. (3.33) 

7. Establish the parabolic portion of the p-y curve, 

[ 

y - 0. 45 y p 2. 5 ] . 
p = Acpc 1 - -~--- (3.34) 

0.45 Yp 
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Equation 3.34 should define the portion of the p-y curve 

from the point of the intersection with Eq. 3.26 to where y 

is equal to 0.6y (see note in step 9). 
p 

8. Establish the next straight-line portion of the p-y curve, 

p = 0.936 A p - 0.085 p {y - 0.6y} • (3.35) 
CC Y50 C . P 

Equation 3.35 should define the portion of the p-y curve 

from the point where y is equa 1 to O. 6y to the point where 
p 

y is equal to 1.8yp (see note in step 9). 

9. Establish the final straight-line portion of the p-y curve, 

p = 0.936 A p - O.l02 · p y • (3.36) 
CC Y50 C p 

Equation 3.36 should define the portion of the p-y curve 

from the point where y is equal to 1.8yp and for all larger 

values of y (see following note). 

Note: The step-by-step procedure is out 1 i ned, and Fig. 

3.12 is drawn, as if there is an intersection between Eqs. 

3. 26 and 3. 34. However, there may be no intersection of 

those two equations and there may be no intersection of Eq. 

3.26 with any of the other equations defining the p-y curve. 

If there is no intersection, the equation should be 

employed that gives the smallest value of p for any value of 

y. 

Recommended Soil Tests. Triaxial compression tests of the unconsol

idated-undrained type with confining pressures conforming to the in situ 

overburden pressures are recommended for determining the shear strength 

of the soil. The value of £ 50 should be taken as the strain during the 

test corresponding to the stress equal to half the maximum 

total-principal-stress difference. The shear strength, c, should be 

interpreted as one-half of the maximum total-stress difference. Values 

obtained from the triaxial tests might be somewhat conservative but would 

represent more realistic strength values than other tests. The unit 

weight of the soil must be determined. 

Example Curves. An example set of p-y curves was computed for stiff 

clay for a pile with a diameter of 48 in. The soil profile that was used 

is shown in Fig. 3.13. The submerged unit weight of the soil was assumed 

to be 50 lb/cu ft for the entire depth. In the absence of a stress-strain 
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curve, ESQ was taken as 0.005 for the full depth of the soil profile. The 

slope of the initial portion of the p-y curve was established by assuming 

a value of k of 463 lb/cu in. The loading was assumed to be cyclic. 

Shear Strength,(T/sqft) 

0 05 1.0 1.5 2.0 or-----r-----"l'T'llc----""T"""----, 

--::; 100 
,= 
.2 -e • ,= 

l. I~ 

In-Situ Strength Profile 

200 

2~.._ ___ ._ ___ ..,__..___...._ ___ -

Fig. 3-.13. Soil profile used for example p-y 
curves for stiff cla~ 

The p-y curves were computed for the following depths below the mud

line: 0, 2, 4, 8, 12, 20, 40, and 60 ft. The plotted curves are shown in 

Fig. 3.14. 

Response of Stiff Clay above the Water Table 

Field Experiments. A lateral load test was 

Houston on a drilled shaft, 36 in. in diameter. 

instrumented at intervals along its 

performed at a site in 

A 10-in. diameter pipe, 

length with elec-

trical-resistance-strain gauges, was positioned along the axis of the 

shaft before concrete was placed. The embedded length of the shaft was 42 

ft. The average undrained shear strength of the clay in the upper 20 ft 
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Fig. ·3.14. Example p-y curves.for stiff clay below the water table, 
Reese criteria, cyclic loading. 

was approximately 2,200 lb/sq ft. The experiments and their intepretation 

are discussed in detail by Welch and Reese (1972) and Reese and Welch 

(1975). 

Recommendations for Computing p-y Curves. The following procedure 

is for short-term static loading and is illustrated in Fig. 3.15a. 

1. Obtain values for undrained shear strength c, soil unit 

weight l, and pile diameter b. Also obtain the values of 

£ 50 from stress-strain curves. If no stress-strain curves 

are available, use a value from £ 50 of 0.010 or 0.005 as 

given in Table 3.3, the larger value being more conserva

tive. 
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Fig. 3.15a. Characteristic shape of p-y curve for static 
loading in stiff clay above water table. 

2. Compute the ultimate soil resistance per unit length of 

shaft, Pu, using the smaller of the values given by Eqs. 

3.18 and 3.19. (In the use of Eq. 3.18 the shear strength 

is taken as the average from the ground surface to the depth 

being considered and J is taken as 0.5. The unit weight of 

the soil should reflect the position of the water table.) 

3. Compute the deflection, y50 , at one-half the ultimate soil 

resistance from Eq. 3.20. 

4. Points describing the p-y curve may be computed from the 

relationship below . 

...e... = 0.5 (...L) 1/4 
Pu Y50 

(3.37) 

5. Beyondy= 16y50 , pis equal to Pu for all values of y. 

The following procedure is for cyclic loading and is illustrated in 

Fig. 3.15b. 
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Fig. 3.15b. Characteristic shape of p-y curve for cyclic 
loading in stiff clay above water table. 

1. Determine the p-y curve for short-term static loading by 

the procedure previously given. 

2. Determine the number of times the design lateral load will 
be applied to the pile. 

3. For several values of p/p obtain the value of C, the param-
u 

eter describing the effect of repeated loading on deforma-

tion, from a relationship developed by laboratory tests, 

(Welch and Reese, 1972), or in the absence of tests, from 
the following equation. 

(3.38) 

4. At the value of p corresponding to the values of p/pu 

selected in step 3, compute new values of y for cyclic load

ing from the following equation. 

Ye= Ys + Yso • C • logN (3.391 
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where 

Ye = deflection under N-cycles of load, 

Ys = deflection under short-term static load, 

Y50 = deflection under short-term static 1 oad at 

one-half the ultimate resistance, and 

N = number of cycles of load application. 

5. The p-y curve defines the soil response after N-cycles of 

load. 

Recommended Soil Tests. Triaxial compression tests of the unconsol

idated-undrained type with confining stresses equal to the overburden 

pressures at the elevations from which the samples were taken are recom

mended to determine the shear strength. The value of E50 should be taken 

as the strain during the test corresponding to the stress equal to half 

the maximum total principal stress difference. The undrained shear 

strength, c, should be defined as one-half the maximum 

total-principal-stress difference. The unit weight of the soil must also 

be determined. 

Example Curves. An example set of p-y curves was computed for stiff 

clay above the water table for a pile with a diameter of 48 in. The soil 

profile that was used is shown in Fig. 3.13. The unit weight of the soil 

was assumed to be 112 lb/cu ft for the entire depth. In the absence of a 

stress-strain curve, E 50 was taken as 0.005. Equation 3.38 was used to 

compute values for the parameter C and it was assumed that there is to be 

100 cycles of load application. 

The p-y curves were computed for the fo 11 owing depths be 1 ow the 

groundline: 0, 1, 2, 4, 8, 12, 20, 40, and 60 ft. The plotted curves are 

shown in Fig. 3.16. 

Unified Criteria for Clays below the Water Table 

Introduction. As was noted in the previous section, no recommen

dations were made for ascertaining for what range of undrained shear 

strength one should employ the criteria for soft clay and for what range 

one should employ the criteria for stiff clay. Sullivan (1977) examined 

the original experiments and developed a set of recommendations that yield 

computed behaviors in reasonably good agreement with the experimenta 1 

results from the Sabine tests reported by Matlock (1970) and with those 

from the Manor tests reported by Reese, Cox and Koop (1975). However, as 

wil 1 be seen from the fo 11 owing presentation, there is a need for the 
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Fig. 3.16. Example p-y curves for stiff clay above water 
table, Welch criteria, cyclic loading. 

engineer to employ some judgement in selecting appropriate parameters for 

use in the prediction equations. 

Recommendations for Computing p-y Curves. The following procedure is 

for short-term static loading and is illustrated in Fig. 3.17. 

1. Obtain values for the undrained shear strength c, the sub

merged unit weight l', and the pile diameter b. Also obtain 

values of t 50 from stress-strain curves. If no 

stress-strain curves are available, the values in Table 3.6 

are provided as guidelines for selection of t 50 . 

2. Compute ca and ov, for x < 12b, where 

ca= average undrained shear strength, 

o = average effective stress, and 
V 

x = depth. 

3. Compute the variation of pu with depth using the equations 

below. 
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Fig. 3.17. Characteristic shape of p-y curve for 
unified clay criteria for static loading . 

4. 

. a. For x < 12b, Pu is the smaller of the values computed 

from the two equations below. 

Pu = ( 3 + O. 5 "6") cb 

b. For x > 12b, 

Pu = 9 cb. 
The steps below are for a particular depth, x. 

Select the coefficients, A and F, as indicated below. 

(3.40) 

(3.41) 

(3.42) 

The 

coefficients A and F, determined empirically for the load 

tests at Sabine and Manor, are given in Table 3.7. The 

terms used in Table 3.7, not defined previously, are 

defined below. 

WL = liquid limit, 

PI= plasticity index, 
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TABLE 3.6. REPRESENTATIVE VALUES 
OF E50· 

C 

(lb/sq ft) 

250 - 500 

500 - 1000 

1000 - 2000 

2000 - 4000 

4000 - 8000 

(Also see Tables 3.3 and 3.5) 

LI= liquidity index, 

2 

1 

0.7 

0.5 

0.4 

OR= overconsolidation ratio, and 

St= sensitivity. 
The recommended procedure for estimating A and F for other 

clays is given below. 

a. Determine as many of the following properties of the 

clay as possible, c, t 50 , OR, St, degree of fissuring, 

ratio of residual to peak undrained shear strength, WL, 

PI, and LI. 

b. Compare the properties of the soil in question to the 

properties of the Sabine and Manor clays listed in 

Table 3.7. 

c. If the properties are similar to either the Sabine or 

Manor clay properties, use A and F for the similar clay. 

d. If the properties are not similar to either, the en

gineer should estimate A and Fusing his judgement and 

Table 3.7 as guides. 

5. Compute: 

Y50 = At5ob. (3.43) 
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TABLE 3.7. CURVE PARAMETERS FOR THE UNIFIED CRITERIA. 

Clay Description A F 

Sabine River 2.5 1.0 

Inorganic, Intact 

C = 300 lb/sq ft 

e:50 = 0.7% 

OR =e 1 

st =e 2 

WL = 92 

PI = 68 

LI = 1 

Manor 0.35 0.5 

Inorganic, Very fissured 

C =e 2400 1 b/ sq ft 

e:50 = 0.5% 

OR > 10 

st =e 1 

WL = 77 

PI = 60 

LI = 0.2 
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6. Obtain (E) . When no other method is available Eq. 3.44 s max 
and Table 3.8 may be used as guidelines. 

( E ) = kx. ( 3. 44) s max 

TABLE 3.8. REPRESENTATIVE VALUES FOR k. 

C k 

(lb/sq ft) (lb/cu in.) 

250 - 500 30 

500 - 1000 100 

1000 - 2000 300 

2000 - 4000 1000 

4000 - 8000 3000 

(Also see Table 3.4) 

7. Compute the deflection at the intersection between the ini

tial linear portion and curved portion, from the equation 
below. 

8a. 

8b. 

(yg can be no larger than 8y5O) 

For0<y<yg, 

P = (Es)maxY· 
For yg < y < 8y

50
, 

1 
p = 0.5p (_1.__)3. 

u Y50 

8c. For 8y50 < y < 30y
50

, 

PR - Pu 
p = Pu + 22 y (y - 8Y50) 

50 
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where 

p = p ( F + (1-F) _x_) 
R u 12 b • 

(pR will be equal to or less than pu) 
8d. For y > 30y50 , 

P = PR· 

(3.49) 

(3.50) 

The following procedure is for cyclic loading and ii illustrated in 

Fig. 3.18. 

1.0 

p. 
0.5 

.£_ • 0.5(-1...:)
111 

Pu Yao 

P • (fa)moxY 

10 

~~R,. 0.5 ( l~b) for x Sl2b 

20 30 

~CR = 0.5 for x>l2b 
u 

Fig. 3.18. Characteristic shape of p-y curve for unified 
clay criteria for cyclic loading. 

1. Repeat steps 1 through 8a for static loading. 

2. Compute 

3a. 

X p = 0 5 p -- < 0.5 p • CR • u 12 b - u 

For y g < y < y 50 , 

1 
p=0.5p (L)3· 

u Y50 
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3b. For y50 < y < 20y50 , 

PcR - 0.5 Pu 
p = o.5 p + ----- {y - y50 ). 

u 19 Y50 
3c. For y > 20y50 , 

(3.53) 

p = PcR. (3.54) 

The procedure outlined above for both static and cyclic loading 

assumes an intersection of the curves defined by Eqs. 3.46 and 3.47. If 

that intersection does not occur, the p-y curve is defined by Eq. 3.46 

until it intersects a portion of the curve defined by Eqs. 3.48 or 3.50 

for static loading, and Eqs. 3.52 or 3.53 for cyclic loading. 

Example Curves. Two example sets of p-y curves were computed using 

the unified criteria; each of the sets is for a pile of 48 in. in diameter 

and for cyclic loading. 

Figure 3.19 shows the set of p-y curves for soft clay; the soil pro

file used is shown in Fig. 3.8. The value of £ 50 was assumed to be 0.02 at 

the mudline and 0.01 at a depth of 80 ft. The unit weight was assumed to 

be 20 lb/cu ft at the groundline and 40 lb/cu ft at a depth of 80 ft. The 

value of A was assumed to be 2.5 and the value of F was assumed to be 1.0. 

The value of k for computing the maximum value of the soil modulus was 

assumed to be 400,000 lb/cu ft. The p-y curves were computed for the fol

lowing depths: 0, 1, 2, 4, 8, 12, 20, and 40 ft (curves for O and 1 ft too 

close to axis to be shown). 
Figure 3.20 shows the set of p-y curves for stiff clay; the soil pro-

file used is shown in Fig. 3.13. The value of £ 50 was assumed to be 0.006 

and the unit weight of the soil was assumed to be 50 lb/cu ft. The value 

of A was assumed to be 0.35 and the value of F wasassumedto be 0.5. The 

value of k for computing the maximum value of the soil modulus was assumed 

to be 800,000 lb/cu ft. The p-y curves were computed for the following 

depths: 0, 1, 2, 4, 8, 12, 20, and 40 ft. 

3.6 RECOMMENDATIONS FOR p-y CURVES FOR SAND 

As shown below, a major experimental program was conducted on the 

behavior of laterally loaded piles in sand below the water table. The 

results can be extended to sand above the water table. 

Response of Sand below the Water Table 

Field Experiments. An extensive series of tests were performed at a 

site on Mustang Island, near Corpus Christi (Cox, Reese, and Grubbs, 
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Fig. 3.19. Example p-y curves for soft clay below water 
table, unified criteria, cyclic loading. 

1974). Two steel pipe piles, 24 in. in diameter, were driven into sand in 

a manner to simulate the driving of an open-ended pipe, and were subjected 

to ldteral loading. The embedded length of the piles was 69 ft. One of 

the piles was subjected to short-term loading and the other to repeated 

loading. 

The soil at the site was a uniformly graded, fine sand with an angle 

of internal friction of 39 degrees. The submerged unit weight was 66 

lb/cu ft. The water surface was maintained a few inches above the mudline 

throughout the test program. 

Recommendations for Computing p-y Curves. The following procedure 

is for short-term static loading and for cyclic loading and is illustrated 

in Fig. 3.21 (Reese, Cox, and Koop, 1974). 

1. Obtain values for the angle of internal friction~. the soil 

unit weight I, and pile diameter b. 

2. Make the following preliminary computations. 

a= 1. Q = 45 + 1. K = 0 4· and K = tan 2 (45 _ 1) 
2 ,1-' 2'0 ., a 2 

(3.55) 
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Fig. 3.20. Example p-y curves for stiff clay below water 
table, unified criteria, cyclic loading. 

3. Compute the ultimate soil resistance per unit length of 

pile using the smaller of the values given by the equations 

below, where xis equal to the depth below the ground sur-

face. [ Koxtan ¢ sins tans 
p = yx · + ---- (b + x tans tana) 
st tan (s-~)cosa tan (S-¢) 

+ K
0
x tanB (tan <I> sinB - tana) - Kab ] (3.56) 

Psd = KaQlx (tan 8
~ - 1) + K

0
brx tan¢ tan 4

~ (3.57) 

For sand below the water table, the submerged unit weight r• should be 

used. 
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b/60 3b/80 

Deflection , y (In.) 

Fig. 3.21. Characteristic shape of a family of p-y curves 
for static and cyclic loading in sand. 

4. In making the computations in Step 3, find the depth xt at 

which there is an intersection at Eqs. 3.56 and 3.57. Above 

this depth use Eq. 3.56. Below this depth use Eq. 3.57. 

5. Select a depth at which a p-y curve is desired. 

6. Establish Yu as 3b/80. Compute Pu by the following 

equation: 

Pu= Asps or Pu= AcPs• (3.58) 

Use the appropriate value of A or A 
S C 

from Fig. 3.22 for 

the particular nondimensional depth, and for either the 

static or cyclic case. Use the appropriate equation 

Eq. 3.56 or Eq. 3.57 by referring to the computation 

4. 

for p , 
s 

in step 

7. Establish ym as b/60. Compute pm by the following equation: 
p = B p or p = B p . ( 3. 59) 
m s s m c s 

Use the appropriate value of Bs or Bc from Fig. 3.23 for 

the particular nondimensional depth, and for either the 

static or cylic case. Use the appropriate equation for p . 
s 

The two straight-line portions of the p-y curve, beyond the 

point where y is equal to b/60, can now be established. 
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1.0 , 

t A, (STATIC) 

2.0 ~· 
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Fig. 3.22. Values of coefficients Ac and As. 
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X 3.0 b 
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Fig. 3.23. Nondimensional coefficient B for soil 
resistance versus depth. 
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8. Establish the initial straight-line portion of the 

p-y curve, 

p = (kx)y. 

Use the appropriate value of k from Table 3.9 or 3.10. 

TABLE 3.9. REPRESENTATIVE VALUES OF k FOR SUBMERGED SAND. 

Relative Uensity Loose Medi um Dense 

Recommended k (lb/cu in.) 20 60 125 

(3.60) 

TABLE 3.10. REPRESENTATIVE VALUES OF k FOR SAND ABOVE WATER TABLE. 

Relative Density Loose Medium Dense 

Reconmended k (lb/cu in.) 25 90 225 

9. Establish the parabolic section of the p-y curve, 

- 1/n p =Cy • (3.61) 

Fit the parabola between points k ~nd mas follows: 

a. Get the slope of line between points m and u by, 

Pu - Pm 
m = --- (3.62) 

Yu - Ym 
b. Obtain the power of the parabolic section by, 
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Pm 
n = -

mym 

c. Obtain the coefficient C as follows: 

C = 
Pm 
1/n 

Ym 

d. Determine point k as, 

= ( C )n/n-1 
yk kx • 

(3.63) 

(3.64) 

(3.65) 

e. Compute appropriate number of points on the parabola by 

using Eq. 3.61. 

Note: The step-by-step procedure is outlined, and Fig. 

3.21 is drawn, as if there is an intersection between the 

initial straight-line portion of the p-y curve and the par

abolic portion of the curve at point k. However, in some 

instances there may be no intersection with the parabola. 

Equation 3.60 defines the p-y curve until there is an inter

section with another branch of the p-y curve or if no inter

section occurs, Eq. 3. 60 defines the complete p-y curve. 

The soil response curves for other depths can be found 

repeating the above steps for each desired depth. 

Simplified Equations 

In his work on the ultimate resistance of a plate in sand, Bowman 

{1958) stated that the angle a ranges from ¢/2 for loose sand to¢ for 

dense sand. Reese, et al. (1974) reported that the value of a was found 

f~om measurements of the contours of the wedge that formed at the ground 

surface and that a from the Mustang Island tests ranged from ¢/3 for stat

ic loading to 3¢/4 for cyclic loading. The angle~ that further defines 

the shape of the wedge of sand at the ground surface is not easy to measure 

experimentally and also can be expected to vary. However, Reese, et al. 

{1974) selected values of a and~ of ¢/2 and 45 + ¢/2, respectively, in 

developing correlations with experimental results from Mustang Island. 

Fenske (1981) points out that Eqs. 3.56 and 3.57 can be simplified if 

a is ¢/2 and~ is 45 + ¢/2. The simplified equations are: 

pst = lb 2 [S 1(x/b) + s2(x/b) 2
] 

psd = lb 2 [S3(x/b)J 
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where 

s1 = (KP - Ka) 
s2 = (tan ~)(K tan a+ K [tan¢ sin ~(sec a+l) - tan a]) 

p 0 

s3 = K2 (K + K tan¢) - K . p p o a 

(3.68) 

(3.69) 

(3.70) 
The depth of transition xt can be found by equating the expressions in 

Eqs. 3.66 and 3.67, as follows: 

xt/b = (S3 - S1)/S2. (3.71) 

It can be seen that s1, s2, s3 , and xt/b are functions only of¢; therefore, 

the values shown in Table 3.11 can be computed. 

TABLE 3.11. NONDIMENSIONAL COEFFICIENTS FOR p-y CURVES 
FOR SAND (after Fenske). 

¢, deg. s1 s2 S3 xt/b 

25.0 2.05805 1. 21808 15.68459 11. 18690 

26.0 2.17061 1. 33495 17.68745 11.62351 
27.0 2.28742 1. 46177 · 19.95332 12.08526 

28.0 2.40879 1. 5994 7 22.52060 12.57407 
29.0 2.53509 1. 74906 25.43390 13. 09204 
30.0 2.66667 1.91170 28. 74513 13.64147 
31.0 2.80394 2.08866 32.51489 14.22489 

32.0 2.94733 2. 28134 36.81400 14.84507 
33.0 3.09732 2.49133 41. 72552 15.50508 
34.0 3.25442 2. 72037 47.34702 16.20830 

35.0 3. 41918 2.97045 53.79347 16.95848 
l 

36.0 3.59222 3.24-376 61. 20067 17.75976 

37.0 3.77421 3.54280 69. 72952 18.61673 

38.0 3. 96586 3.87034 79.57113 19.53452 
39.0 4.16799 4.22954 90.95327 20. 51883 

40.0 4.38147 4.62396 . 104 .14818 21. 57604 

66 



Recommended Soil Tests. Triaxial compression tests are recommended 

for obtaining the angle of internal friction of the sand. Confining pres

sures should be used which are close or equal to those at the depths being 

considered in the analysis. Tests must be performed to determine the unit 

weight of the sand. In many instances, however, undisturbed samples of 

sand cannot be obtained and the value of¢ must be obtained from corre

lations with static cone penetration tests or from dynamic penetration 

tests. 

Example Curves. An example set of p-y curves was computed for sand 

below the water table for a pile with a diameter of 48 in. The sand is 

assumed to have an angle of internal friction of 34° and a submerged unit 

weight of 62.4 lb/cu ft. The loading was assumed to be cyclic. 

The p-y curves were computed for the following depths below the mud

line: 0, 1, 2, 4, 8, 12, and 20 ft. The plotted curves are shown in Fig. 

3.24. 

8000 

-C: 

' ..0 
.:::::. 600 
a. 

a, 
(.) 

§ 4000 -en 
en 
a, 

0:: 

:-= 20 
0 
en 

0 
0.00 

,-----------20ft 

-------------12ft 

Oft 

0.80 1.60 2.40 3.20 4.00 4.80 

Deflection, y (in;) 

Fig. 3.24. Example p-y curves for sand below water table, 
Reese criteria, cyclic loading. 
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Response of Sand Above the Water Table 

The procedure in the previous section can be used for sand above the 

water table if appropriate adjustments are made in the unit weight and 

angle of internal friction of the sand. Some small-scale experiments were 

performed by Parker and Reese (1971) and recommendations for p-y curves 

for dry sand were developed from those experiments. The results from the 

Parker and Reese experiments should be useful as check of solutions made 

using results from the test program using full-scale piles. 

3. 7 RECOMMENDATIONS FOR p-y CURVES FOR ROCK 

It is hardly surprising that not much information is available on the 

behavior of piles that have been installed in rock. Some other type of 

foundation would normally be used. However, a study was made of the 

behavior of an instrumented drilled shaft that was installed in a vuggy 

limestone in the Florida Keys (Reese and Nyman, 1978). The test was per

formed for the purpose of gaining information for the design of founda

tions for highway bridges in the Florida Keys. 

Difficulty was encountered in obtaining properties of the intact 

rock. Cores broke during excavation and penetrometer tests were mislead

ing (because of the vugs) or could not be run. It was possible to test two 

cores from the site. The small discontinuities on the outside surface of 

the specimens were coated with a thin layer of gypsum cement in an effort 

to minimize stress concentrations. The ends of_ the specimens were cut 
with a rock saw and lapped flat and parallel. The specimens were 5.88 
in. in diameter and with heights of 11.88 in. for Specimen 1 and 10.44 in. 

for Specimen 2. The undrained shear strength of the specimens were taken 

as one-half the unconfined compressive strength and were 17.4 and 13.6 

T/sq ft for Specimens 1 and 2, respectively. 

The rock at the site was alsq investigated by in-situ-grout-plug 

tests under the direction of Dr. John Schmertmann (1977). A 5.5 in. diam

eter hole was drilled into the limestone, a high strength steel bar was 

placed to the bottom of the hole, and a grout plug was cast over the lower 

end of the bar. The bar was pulled until failure occurred and the grout 

was examined to see that failure occurred at t'he interface of the grout 

and limestone. Tests were performed at three borings and the following 

results were obtained, in T/sq ft: depth into limestone from 2.5 to 5 ft, 

23.8, 13.7, and 12.0; depth into limestone from 8 to 10 ft, 18.2, 21.7, 

68 



and 26.5; depth into limestone from 18 to 20 ft, 13.7 and 10.7. The aver

age of the eight tests was 16.3 T/sq. However, the rock was stronger in 

the zone where the deflections of the drilled shaft were most significant 

and a shear strength of 18 T/sq ft was selected for correlation. 

The drilled shaft was 48 in. in diameter and penetrated 43.7 ft into 

the limestone. The overburden of fill was 14 ft thick and was cased. The 

load was applied about 11.5 ft above the limestone. A maximum load of 75 

tons was applied to the drilled shaft. The maximum deflection at the 

point of load applicaton was 0.71 in. and at the top of the rock (bottom 

of casing) it was 0.0213 in. While the curve of load versus deflection 

was nonlinear, there was no indication of failure of the rock. 

A single p-y curve, shown in Fig. 3.25, was proposed for the design 

of piles under lateral loading in the Florida Keys. Data are insufficient 

to indicate a family of curves to reflect any increased resistancewith 

depth. Cyclic loading caused no measurable decrease resistance by the 

rock. 

I-. Perform proof test if deflection 
I is in this range 

I Pu1t =b Su --

1 

I 
I -I Es -2000su 

I 
I 

y 

Assume brittle fracture 
in this range 

Fig. 3.250 Recommended p-y curve for design of drilled shaft 
in vuggy limeston~ 
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As shown in the figure, load tests are recommended if deflections of 

the rock (and pile) are greater than 0.004b and brittle fracture is 

assumed if the lateral stress (force per unit of length) against the rock 

becomes greater than the diameter times the shear strength su of the rock. 

The p-y curve shown in Fig. 3.25 should be employed with considerable 

caution because of the limited amount of experimental data and because of 

the great variability in rock. The behavior of rock at a site could very 

well be controlled not by the strength of intact specimens but by joints, 

cracks, and secondary structure of the rock. 
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3.9 EXERCISES 

3.1 Given a clay with an undrained shear strength of 800 lb/sq ft a 

submerged unit weight of 48 lb/cu ft and an E50 of 0.02, make necessary 

computations and plot p-y curves for both static and cyclic loading for 

depths of 6 ft and 12 ft. Assume the pile diameter to be 24 in. Use rec

ommendations for p-y curves for soft clay below the water surface. 

3.2 Repeat problem 1 using the Unified Criteria Method. 

3.3 Repeat problem 1 for a stiff clay with undrained shear strength 

of 4000 lb/sq ft, E
50 

of 0.005, and a dry unit weight of 115 lb/cu ft. 

Plot p-y curves for both stiff clay above water surface and stiff clay 

below the water surface. 
3.4 Repeat problem 1 for a sand with an angle of internal friction 

of 38° and a submerged unit weight of 55 lb/cu ft. 
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CHAPTER 4. SOLUTIONS FOR LATERALLY LOADED PILES WITH SOIL 

MODULUS ASSUMED CONSTANT, 

CONSTANT PILE STIFFNESS, NO AXIAL LOADING 

4.1 SOLUTION OF THE DIFFERENTIAL EQUATION 

The pile is assumed to be supported along its entire length by a con

tinuous stratum of soil which is capable of exerting a reaction to the 

pile in a direction opposite to the pile deflection. Fig. 4.1 shows that 

the soil resistance p per unit of length of the pile is related to the 

deflection y by the soil modulus E . For the case being considered the s 
soil modulus Es is assumed to have the same value for all points along the 

pile and is defined by the constant a. Furthermore, EI is constant and 

there is no axial loading. 

"2 

' .c -a. 
I -Q) 

0 
C: 
0 -u, 
u, 
Q) 

a:: 

0 
en 

-P - = 0( y 

Deflection, y(in) 

Fig. 4.1. Soil response curve. 

The second-order differential equation is shown in Eq. 4.1 and the 

fourth-order differential equation is shown in Eq. 4.2. It should be not

ed that the fourth-order equation is derived by differentiation, assuming 

that the stiffness EI is constant. 

Preceding page blank (4.1) 
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~=_e__ 
dx 4 EI 

( 4 .2) 

Employing the basic relationship between the soil resistance p and 

pile deflection y, Eq. 4.3, and employing the identity in Eq. 4.4, Eq. 4.5 

is derived. 
p = -a,y 

4 - a 
S - 4EI 

~ + 4s4y = o 
dx 4 

(4.3) 

(4.4) 

(4.5) 

The parameter ~ may be defined as the relative stiffness factor; the 

influence of Son the solution of Eq. 4.5 will be indicated later. 

The solution of Eq. 4.5 can be easily 

niques, as shown in Eqs. 4.6 through 4.10. 

(D 4 + 4S 4 )y = 0 

m4 + 4S 4 = O 

m1 = -m3 = S(l + i) 

m
2 

= -m
4 

= S(-1 + i) 

obtained by standard tech-

(4.6) 
( 4. 7) 

(4.8) 
(4.9) 

y = e6X(cl cos sx + c2 sin sx) + e -SX(c3 cos sx + C4 sin sx) 
(4.10) 

The coefficients c1 , c2, c
3

, and c
4 

must be evaluated for the various 

boundary conditions that are desired. The evaluation of these coeffi

cients must involve the use of the derivatives that are shown in Eqs. 4.11 

through 4 .14. 

(4.11.) 

d2 sx - -
~

2 
= 2S2 e (C2 cos Sx - c1 sin Sx) 

dx -sx - -
+ 2S 2e (C3 sin Sx - c4 cos Sx) (4.12) 

::{ = 2S3 e
6
:cxc2 :_OS Sx - cl ~in sx - c2 .:.in sx - cl ,:_OS Sx) 

+ 2S 3e S (-C3 sin Sx + c4 cos Sx + c3 cos Sx + c4 sin Sx) (4.13) 

(4.14) 
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4.2 PILE OF INFINITE LENGTH 

If one considers a long pile, one which can be considered to have an 

infinite length, a simple set of equations can be derived. Because - -deflections must be small for large values of x, c1 = c2 = 0. This conclu-

sion is reached by examining Eq. 4.10. The term esxincreases without lim

it as x increases. The terms sin ~x and cos ~x oscillate between +1 and 

-1; therefore, the only way that the expression for y can have a finite 
- -

value is for c1 and c2 to approach zero as x becomes large. The first case 

to be considered is shown in Fig. 4.2(a). The boundary conditions are 

given by Eqs. 4.15 and 4.16. 

d2y Mt 
at X = 0, - = -

(a) 

M♦ 

Pi 0---y 

I 
X 

{ b) 

.!L..,w;,u--y 

I 
X 

(4.15) 

(4.16) 

{c) 

/Spring { tokes no shear but 
restro ins pile - head 

0 rotation) 
't •J.---y 

X 

Fig. 4.2. Boundary conditions at top of pile 

The use of Eq. 4.15 leads to 

2Eis2 (c3(o) - c4(1)J = 

(4.17) 
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The use of Eq. 4.16 leads to 

2Eis 3[-C3(o) + c4(1) + c3(1) + c4(0)J = Pt, and 
p 

c + c = t 
3 4 2Eif33 . 

(4.18) 

With the determination of the coefficients, substitutions can be 

made and relevant equations derived as shown below. 
Timoshenko (1941) says the 11 long 11 pile solution is satisfactory 

where aL ~ 4. Solutions will be shown later for the case where the nondi

mensional length of the pile is less than 4. 

Making use of Eqs. 4.17 and 4.18, expressions for y, S, M, V, and p 

can be written and are shown in Eqs. 4.19 through 4.23. 

-Bx e 
y = 2Eis 2 [ 

pt 

13 cos Bx+ Mt (cos sx - sin 

s -sx [2Pts' (sin sx + cos sx) 
Mt sx] = -e E + EIS cos 

s 

[p 
sx + cos sx)] - X t . + Mt (sin M = e B S Sln BX 

V = e-Bx [Pt(cos BX - sin sx·) - 2Mtf3 sin sx] 

p = 2f3e-Bx [-Pt cos sx - Mte(cos sx - sin sx)] 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

It is convenient to define some functions which make it easier to 

write the above equations. These are: 
A

1 
= e-sx(cos sx + sin sx) 

B1 = e-sx(cos sx - sin sx) 

c
1 

= e-sxcos sx 

o
1 

= e-sxsin sx. 
Using these functions, Eqs. 4.19 through 4.23 become: 

· 2P tB Mt 
y =-a-Cl+ 2EIB 2 Bl 

-2P tB 2 Mt 
S = a Al - EI B Cl 

pt 
M = S D1 + MtAl 

V = PtBl - 2MtsD1 
p = -2Ptscl - 2Mtf3 2Bl 

Values for A1, B1, c1, and o1 are shown in Table 4.1. 
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TABLE 4.1. TABLE OF FUNCTIONS FOR PILE OF INFINITE LENGTH. 

f3X Al B, c, o, f3X Al s, c, o, 

0 1.0000 1.0000 1.0000 0.0000 2.4 -0.0056 -0.1282 -0.0669 0.0613 
0.1 0.9907 0.8100 0.9003 0.0903 2.6 -0.0254 -0.1019 -0.0636 0.0383 
0.2 0.9651 0.6398 0.8024 0.1627 2.8 -0.0369 -0.0777 -0.0573 0.0204 
0.3 0.9267 0.4888 o. 7077 0.2189 3.2 -0.0431 -0.0383 -0.0407 -0.0024 
0.4 0.8784 0.3564 0.6174 0.2610 3.6 -0.0366 -0.0124 -0.0245 -0.0121 
0.5 0.8231 0.2415 0.5323 0.2908 4.0 -0.0258 0.0019 -0.0120 -0.0139 
0.6 0.7628 0.1431 0.4530 0.3099 4.4 -0.0155 0.0079 -0.0038 -0.0117 
0.7 0.6997 0.0599 0.3798 0.3199 4.8 -0.0075 0.0089 0.0007 -0.0082 

-...J 0.8 0.6354 -0.0093 0.3131 0.3223 5.2 -0.0023 0.0075 0.0026 -0.0049 
-...J 0.9 0.5712 -0.0657 0.2527 0.3185 5.6 0.0005 0.0052 0.0029 -0.0023 

1.0 0.5083 -0.1108 0.1988 0.3096 6.0 0.0017 0.0031 0.0024 -0.0007 
1.1 0.4476 -0.1457 0.1510 0.2967 6.4 0.0018 0.0015 0.0017 0.0003 
1.2 0.3899 -0.1716 0.1091 0.2807 6.8 0.0015 0.0004 0.0010 0.0006 
1.3 0.3355 -0.1897 0.0729 0.2626 7.2 0.0011 -0.00014 0.00045 0.00060 
1.4 0.2849 -0.2011 0.0419 ·o •. 2430 7.6 0.00061 -0.00036 0.00012 0.00049 
1.5 0.2384 -0.2068 0.0158 0.2226 8.0 0.00028 -0.00038 -0.0005 0.00033 
1.6 0.1959 -0.2077 -0.0059 0.2018 8.4 0.00007 -0.00031 -0.00012 0.00019 
1.7 0.1576 -0.2047 -0.0235 0.1812 8.8 -0.00003 -0.00021 -0.00012 0.00009 
1.8 0.1234 -0.1985 -0.0376 0.1610 9.2 -0.00008 -0.00012 -0.00010 0.00002 
1.9 0.0932 -0.1899 -0.0484 0.1415 9.6 -0.00008 -0.00005 -0.00007 -0.00001 
2.0 0.0667 -0.1794 -0.0563 0.1230 10.0 -0.00006 -0.00001 -0.00004 -0.00002 
2.2 0.0244 -0.1548 -0.0652 0.0895 



For a pile whose head is fixed against rotation, as shown in Fig. 

4.2(b), the solution may be obtained by employing the boundary conditions 

as given in Eqs. 4.33 and 4.34. 

at X = 0, ~ - 0 (4.33) dx -

d3y pt 
-= (4.34) 
dx 3 EI 

procedures as shown above, it was found that c3 = c4 = 
The solution for long piles is given in Eqs. 4.35 through 4.39. 

Ptf:3 
y = -;- A1 ( 4. 3 5) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

It is convenient frequently to have a solution for a third set of 

boundary conditions, as shown in Fig. 4.2(c). The boundary conditions are 

given in Eqs. 4.40 and 4.41. 

at X = 0, 
EI~ 

dx 2 

~ 
dx 

d3y = ~ 
dx 3 EI 

(4.40) 

(4.41) 

Employing these boundary conditions, the coefficients c3 and c4 were eval

uated as shown in Eqs. 4.42 and 4.43. For convenience in writing, the 

rotational restraint Mt/St is given the symbol k
0

• 

C3 = 
Pt(2Eis + ke) 

EI (a + 4s 3k
0

) 

(4.42) 

C4 
KPt 

= 
EI(a + 4S 3k

0
) 

(4.43) 

Equations 4.42 and 4.43 may be substituted into Eqs. 4.10 through 4.14 to 

obtain the expressions for the pile response. 
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4.3 PILE OF FINITE LENGTH 

A solution for the case of the pile of finite length is useful. The 

following derivation is for one set of boundary conditions, as shown. 

at X = 0 

at X = L 

d2y Mt 
M = M or - = -t dx 2 EI 

d3y pt 
V = P or - = -

t dx 3 EI 

d2 v M = 0 or ~ = O 
dx 2 

d3 v 
V = 0 or;::_,/..= 0 

dx 3 

Employing Eqs. 4.44 and 4.12, Eq. 4.48 results. 

M 
E~ = 2 s2(C2 - C4) 

Employing Eqs. 4.45 and 4.13, Eq. 4.49 is obtained. 
p 
E; = 2 s3 (-Cl + c2 + C3 + C4) 

Employing Eqs. 4.46 and 4.12, Eq. 4.50 is obtained. 
SL - -

(4.44) 

(4.45) 

(4.46) 

(4.47} 

(4.48) 

(4.49) 

0 = 2e 2 e (C 2 cos el - c1 sin el) 
+ 2e 2 e-S[(C3 sin eL - C4 cos eL) (4.50) 

Employing Eqs. 4.47 and 4.13, Eq. 4.51 is obtained. 

0 = 2e 3 e8Lcc cos eL - cl sin el - c2 sin eL - cl cos eL) 
+ 2fhe-st\-c3 sin eL + C4 cos el + C3 cos eL + C4 sin eL) 

(4.51) 

Equations 4.48 through 4.51 can be solved in any convenient way for 
- -

the coefficients c1 through c4. A step-by-step procedure that is 

straightforward is shown in the Appendix. 

4.4 REFERENCES 

Timoshenko, S. P., Strength of Materials, Part II, Advanced Theory 
and Problems, 2nd Edition - Tenth Printing. D. Van Nostrand Company, 
Inc., 1941, p. 20. 
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4.5 EXERCISES 

4.1 Assume a fixed-head steel pipe pile with a 36-in. outside diam

eter and a wall thickness of 1.0 in. a length of 70 ft, and a lateral load 

of 40 kips at the mudline. Assume no axial load and that EI is constant 

with depth. Assume Es= 2000 lb/sq in. and constant with depth. Compute 

deflection and bending moment as a function of depth. 

4.2 Assume the pile in problem 1 is free to rotate at the mudline, 

find the maximum bending moment, and depth to point of maximum bending 

moment for increments of load of 10 kips until a plastic hinge develops in 

the steel . 

4.3 Derive expressions for pile response with pile head restrained 

against rotation as shown in Fig. 4.2(c) for a "long" pile. Then repeat 

problem 1 assuming k0 =Mt/St= 6 x 10 8 in~lb. 
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CHAPTER 5. THE DIFFERENCE EQUATION METHOD 

FOR SOLVING THE DIFFERENTIAL EQUATION 

FOR A LATERALLY LOADED PILE 

5.1 INTRODUCTION 

If the relationship between soil reaction p and deflection y is 

linear and defined by the soil modulus E as shown in Fig. 3.2(b), the s . 
soil resistance per unit length of pile is equal to the modulus multiplied 

by the deflection. If the soil modulus is constant with depth and if the 

pile can be considered to be of infinite length, the differential equation 

can be solved rather easily. The solution is 

y = e13x(Cl cos ax+ c2 sin ax) 

+ e-·i3X(c3 cos ax+ C4 sin ax) 

as shown in Chapter 4. As was shown, the coefficients c1, c
2

, c3, and c4 
can be evaluated by using the boundary conditions. 

If the soil modulus has a random variation with depth, the soil 

resistance is equal to some function of x multiplied by the deflection. 

The solution of the differential equation can be made by writing the dif

ferential equation in difference form. This method was suggested by Pal

mer and Thompson ( 1948). A convenient way of solving the difference 

equation has been suggested by Gleser (1953). Contributions to the gener

al method have been made by Focht and McClelland (1955) and Howe (1955). 

The differential equation is 

0 • ( 5.1) 

5.2 RELATIONSHIPS IN DIFFERENCE FORM 

Figure 5.1 shows a portion of the elastic curve of a pile. Relation

ships in difference form are as follows: 

(5.2) 

(~\ 
dx2

/.. x=m 
(5.3) 

81 



h 

h 

h 

h 

/)/ 
I; / 

I I 
t>--1---.:::..---.....,,1 I 

t>--+-....:..w.;L.L-_ ___,._,,I I 
JI/ 

<>-+---=---, I 
~=.,__--'-<ii I 

I I I 
....+-...W..::C~~' I 

X 

/// 
I II 

/11 
t_'d 
I 

Fig. 5.1. Representation of deflected pile. 

In a similar manner 

(~) Ym-2 - 2Ym-1 + 2Ym+l - Ym+2 
-

dx 3 2h 3 
x=m 

(~) Ym-2 - 4Ym-1 + 6Ym - 4Ym+l + Ym+2 
-

dx 4 h4 
x=m 

Equation 5.5 is substituted into Eq. 5.1 
-E h4 

sm 
EI 

(5.4) 

(5.5) 

(5.6) 

Figure 5.2 shows the manner in which the pile is subdivided. Two 

imaginary points are shown below the tip of the pile and two above the top 

of the pile. Since Es is presumably known for all points along the pile, 

it is possible to write t + 1 algebraic equations, similar to Eq. 5.6, for 

points O through t. Two boundary conditions at the tip of the pile and two 
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at the top of the pile yield four additional equations, giving a total of 

t + 5 simultaneous equations. When solved, these equations give the 

deflection of the pile from point -2 through point t + 2. A solution can 

be obtained for any number of subdivisions of the pile. 

t +2 
t +I 

t 

6 
5 
4 
3 
2 
I 

0 

-I 
-2 

Fig. 5.2. Method of subdividing pile. 

5.3 THE GLESER METHOD OF SOLUTION 

Appendix 2 presents a detailed derivation of the method proposed by 

Gleser (1953) for the solution of the simultaneous algebraic equations. 

The detailed derivations that are presented are intended to provide 

the reader with sufficient information on the difference-equation method 

to allow for the evaluation of the method. In addition, the derivations 

that are presented provide guidance in developing equations for addi

tional sets of boundary conditions. For further guidance, a step-by-step 

computation procedure is presented. 

1. Compute the A-values, using Eq. A2.7. 

2. Compute B0, B1, and B2 using Eqs. A2.14, A2.15, and A2.23. 

3. Compute other B-values, using Eqs. A2.35 and A2.36 through 

B2t+l · 
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4. Compute Ci, c2, and c3 using Eqs. A2.47, A2.56, and A2.57. 

These steps are applicable to all cases. 

(Steps 5 through 11 pertain to Cases 1 and 2) 

5. Compute b1 using Eq. A2.41 and b5 using Eq. A2.63. 

6. 

7. 

Compute yt' Yt+l' and Yt+2 using Eqs. A2.42, A2.73, and A2.74. 

Compute yt-l' yt_2 , and other y-values using Eq. A2.34 and 

appropriate B-values. 

8. Compute slope using 

s 
m 

Ym-1 - Ym+l =-----
2h 

9. Compute moment using 

EI 
Mm= h2° (ym-1 - 2Ym + Ym+l). 

10. Compute shear using 

V _ EI ( 2 + ) 
m - 2h3 Ym-2 - Ym-1 Ym+l - Ym+2 • 

11. Compute soil reaction using 

( 5. 7) 

(5.8) 

(5.9) 

P = -E y (5.10) 
m s m· 

m 
(Steps 12 through 14 pertain to Case 3) 

12. Compute b1 using Eq. A2.41. 

13. Compute yt' Yt+l' and Yt+2 using Eqs. A2.89, A2.82, and A2.80. 
14. Other computations proceed as from Step 7, above. 

5.4 EXAMPLE COMPUTATION 

An example computation is presented to illustrate the step-by-step 

procedure. 

Pile: 24 in. in diameter by 1 in. wall thickness; 

I= 4787 in. 4 
; length= 1200 in. 

Loading: fixed-head case, Pt= 60,000 lb 

Soil modulus: Es= kx, k = 5 lb/cu in. 

Number of increments: 5, h = 240 in. 

Find: yt and Mt 
Computation of A-values: 

k X h4 
A = --- = 0.1155 x 
m EI 
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Point x, in. Am 

0 1,200 138.60 

1 960 110.88 

2 720 83.16 

3 480 55.44 

4 240 27.72 

5 0 0 

Computation of B-values: 

2 2 
Bo= Ao+ 2 = 138.60 + 2 = o.014225 

B1 = 280 = 0.028450 

1 1 
82 = _5_+_A

1 
___ 2_B_l = 5 + 110.88 - (0.028450)2 = 0.003534 

83 = 82(4-81) = 0.008634(4~0.028450) = 0.034290 

B = 1 
4 6 + A2 - B0 - B3 (4-81) 

= l = 0.011235 
6 + 83.16 - 0.014225 - 0.034290(4-0.028450) 

85 = 84(4-83) = 0.011235(4-0.034290) = 0.044555 

l 
= ----------------- = 0.016327 

6 + 55.44 - 0.008634 - 0.044555(4-0.034290) 

87 = 86(4-85) = 0.016327(4-0.044555) = 0.064581 

1 1 
B = ------- = ----------------
8 6 + A4-B4-B7(4-B 5) 6 + 27.72 - 0.011235 - 0.064581(4-0.044555) 

= 0.029395 

89 = 88(4-87) = 0.029895(4-0.064581) = 0.117649 
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1 
B =-------

10 6 + A5-B5-B9(4-B7) 

1 
= -------------- = 0.181127 

6 + 0 - 0.016327 - 0.117649(4-0.064581) 

B11 = B10(4-B9) = 0.181127(4-0.117649) = 0.703199. 

Computation of C*-values: 

1 1 1 er= - = - = --- = 5.520988 
B2t B10 0.181127 

C2 = Ci82t+l - 2 - 82t-2( 2 - 82t-3) = Ci811 - 2 - 88( 2-B7) 

= 5.520988(0.703199) - 2 - 0.029895(2-0.064581) = 1.824494 

C3 = Ci - 82t-4 - 82t-1( 2- 82t-3) = Ci - 86 - B9( 2 - B7) 

= 5.520988 - 0.016327 - 0.117649(2-0.064581) = 5.276961. 

Computation of y-values: 

2Pth 3 2(60,000) ( 1200 )3 
bl= = -

5
- = 11.55128 

El (30 x 106 )(4787) 

11.55128(1 + 0.29895) 
= 5.276961(1+0.029895) - l.824494(0.117649) = 

2
•
2719015 

in. 

B2t-l(yt) 0.117649(2.2719015) 
Y5 = Yt+l = 1 + B = 1 + 0.029895 = 0.260341 in. 

2t-2 

Y7 = Yt+2 = Cf(B2t+l){yt+l) - Ciy~ = Ci811Y5 - CiY5 

= 5.520988(0.703199)(0.260341) - 5.520988(2.2719015) = -11.571676 in. 

y4 = -B8y6 + B9y5 = - (0.029895 x 0.260341) + (0.117649 x 

2.2719015) = 0.259504 in. 
Y3 = -B6Y5 + B7y4 = - (0.016327 x 2.2719015) + (0.064581 x 

0.259504) = - 0.0203344 in. 
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Y2 = -B4Y4 + B5Y3 = (0.011235 X 0.259504) + (0.044555 X 

- 0.0203344) - - 0.0038215 in. 

Y1 = -B2Y3 + B3Y2 = (0.008634 X -0.0203344) + (0.034290 X 

- 0.0038215) = 0.0000442 in. 

Yo = -BOy2 + 81Y1 = - (0.014225 X -0.0038215) + (0.028450 X 

0.0000442) = 0.0000556 in. 

Computation of shear and moment at mudline: 

v5 = 
3o X l0

5
(
47 s7) [-0.0203344 - 2(0.259504) + 2(0.260341) - (-11.532405)] 

2(240) 3 

v5 = 59,800 lbs. Checks load at mudline. 

EI ) 
M5 = h2 (Y4 - 2y5 + Y5 

M = 30 X l0
5

(
4787 ) [0.259504 - 2(2.2719015) + 0.260341] 

5 (240) 2 

= -10,060,000 in.-lbs 

Dividing the pile into only 5 increments leads to serious errors 

because of failure to represent properly the elastic curve. Using 50 

increments, the values of moment and deflection at the top of the pile 

were calculated to be 

Mt= - 6,870,000 in.-lb, 

yt = 0.730 in. 

As may be understood, care should be used in deciding the mesh size and 

the number of significant figures to employ in solving the difference 

equations. 

5.5 DIFFERENCE EQUATIONS FOR CASE OF AXIAL LOADING AND 

FOR CHANGES IN BENDING STIFFNESS 

The solution procedure as presented by Gleser serves to illustrate 

the difference-equation method and the equations, for the case of a coarse 
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mesh, can be readily solved by hand. But for many practical problems it 

is necessary to address the effects of axial loading and changes in bend

ing stiffness. Thus, the following derivation is presented but not in 

detail as was done in Appendix 2. 

The governing differential equation was presented in Chapter 2; 

renumbered here for convenience. 

EI ~ + P ~ + E y = 0 
dx 4 x dx 2 s 

(5.11) 

Rewriting the first term of the equation with respect to moment and set-

ting Es to K for ease in writing, we have 

d2M d2 v - + P =-..t... + KY = a. 
dx 2 x dx 2 (5.12) 

The finite difference expressions for the first two terms of Eq. 5.12 
at point m are 

and 

where 

(::~) m = [ Ym-2 Rm-1 + Ym-1 (-2Rm - 2Rm-1) 

p (~) 
X dx2 

m 

+ y ( 4R + R l + R l) m m m- m+ 

= P x (Ym-1 - 2Ym + Ym+1) , 
h2 

Rm= flexural rigidity at point (m), that is, 

Rm = EmIM • 

(5.13) 

(5.13) 

(5.14) 

Substituting expressions from Eqs. 5.13 and 5.14 into 5.12 results in 
the differential equation in finite difference form. 

Ym-2Rm-1 + Ym-1 ( -2Rm-1 - 2Rm + Pxh2) 

+ Ym ( Rm-1 + 4Rm + Rm+l - 2P xh2 + Kmh4) + Ym+l 

(-2Rm - 2Rm+l + p xh2) + Ym+2 Rm+l = 0 (5.15) 
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It is noted that the axial force P which produces compression is 
X 

assumed to be positive. It is also noted that P acts through the axis of 
X 

the pile; thus, P causes no moment at the top of the pile. 
X 

Applying the boundary conditions to the top and bottom of the pile, 

the solution to Eq. 5.15 can proceed (Gleser, 1953). 

Using the previous notation, the two boundary conditions at the bot

tom of the pile (point 0) are zero bending moment, 

(6) = 0, 
dx 2 

0 

(5.16) 

and zero shear, 

R (~) + 
O dx 3 O 

(5.17) 

For simplicity it is assumed that 

R_1=Ra=R1. 
These boundary conditions are, in finite difference form, 

y_l - 2y0 + Y1 = 0, (5.18) 

= Y_l (2 - p() -Y1 ( 2 - p()+ Y2• (5.19) 

respectively. Using these boundary conditions in finite difference form 

with Eq. 5.15 where mis equal to zero, and rearranging terms, results in 

the following equations. 

Yo= aOyl - b0y2' 
(5.20) 

2Ro + 2Rl - 2Pxh 2 

(5.21) 

(5.22) 

Equation 5.15 can be expressed for all values of mother than O and 

the top of the pile by the following relationships: 

Ym = amym+l - bmym+2' (5•23 ) 

am 
-2b 1R + a b R + 2R - 2b 1R + 2R l - P h2 (1-b 1) 

= m- m-1 m-2 m-1 m-1 m m- m m+ x m-

(5.24) 
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C = 
m 

_ Rm+l 
b - -- and m C ' m 

R - 2a R -m-1 m-1 m-1 

(5.25) 

(5.26) 

Three sets of boundary conditions are considered at' the top of the 

pile where m = t. 

1. The lateral load (Pt) and the moment (Mt) are known. 

2. The lateral load (Pt) and the slope of the elastic curve (St) are 

known. 

3. The 1 atera l 1 oad (Pt) and the rotat i ona 1-restra int constant 

(Mt/St) are known. 
For convenience in establishing expressions for these boundary con

ditions, the following constants are defined: 

2P h3 
t 

p h2 
X E =--R • 

t 

( 5. 27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

The difference equations expressing the first of the boundary condi

tions for the top of the pile are: 

Rt 

2
h3 ( Yt-2 - 2Yt-1 + 2Yt+l - Yt+2) 

+ PX 
2h (Yt-1 - Yt+1) = pt ' (5.32) 

:; ( Yt-1 - 2Yt + Yt+l) = Mt . (5.33) 
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After some substitutions the difference equations for the deflection at 

the top of the pile and at the two imaginary points above the top of the 

pile are: 
(5.34) 

(5.35) 

(5.36) 

where 

01 Hl 
G1H2 (1 -•t 

Gl ) I ( 5. 37) = +--+ 
G2 bt, G2 

02 J3 
atJ2 J2H2 

(5.38) = +-- - --~ btG2 

Gl = 2 - at-1 (5.39) 

G2 = 1-bt-1 (5.40) 
' 

Hl = -2a 1 Eat-1 - bt-2 + at-1 at-2 ' and (5.41) 
t-

H2 = -at-2bt-1 + 2bt-1 + 2 + E(l + bt-1) (5.42) 

The difference equations for the second set of boundary conditions 

are Eqs. 5.32 and 5.43: 

Yt-1 - Yt+l = Jl. (5.43) 
The resulting difference equations for the deflections at the three 

points at the top of the pile are: 

04 
Yt - Q, 

3 
(5.44) 

= 
at-lYt - Jl 

, and Yt+l G4 
(5.45) 

atyt+l - y 
Yt+2 = t 

bt 
(5.46) 

where 

H2at-1 atat-1 1 
03 = Hl + +-

G4 btG4 bt 
(5.47) 
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JlH2 Jlat 
Q4 = J3 + -- - -- , and 

G4 btG4 
(5.48) 

G4 = 1 + bt-1' (5.49) 

and the other constants are as previously defined. 

The difference equations for the third set of boundary conditions are 

Eqs. 5.32 and 5.50: 

Yt-1 - 2Yt + Yt+l 
= J4. 

Yt-1 - Yt+l 
(5.50) 

The resulting diference equations for the deflections at the three 

points at the top of the pile are: 

( 5. 51 ) 

Yt+l 
= Yt (Gl + J4at-ll 

= H3Yt , and 
G2 + J4G4 

(5.52) 

Yt+2 = ~t ( aty t+ 1 - Y t ) ' (5.53) 

where 

Gl + J4at-1 
H = -----
3 G2 + J4G4 

(5.54) 

The other constants have been previously defined. 

The differential equation can be revised and difference equations 

can be written to deal with distributed loads, applied shear and moment at 

any point along the pile, and inertial effects. A wide variety of prob

lems can be addressed with the resulting nonlinear beam-column problem. 

Matlock (1956, 1957, 1958, 1962, 1964) has given attention to problem sol

utions using an approach similar to that presented herein. 

5.6 COMPUTER PROGRAM COM622 

A computer program, COM622, has been written for the beam-column 

equations presented in Eqs. 5.12 through 5.54. A listing of the program, 

input forms, sample input, and sample output are in Appendix 3. 
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Some comments pertaining to the use of the program are presented in 

comment cards in the listing. The following comments may also be useful. 

Limitations of the program: 

• The pile is assumed to remain elastic; 

• The ability to analyze group effects is not included; 

• Information on response of complex soil profiles, e.g., layered 

soils, is extremely limited at present; 

• Time effects, such as those associated with sustained or cyclic 

loading, are not directly included but can be taken into account 

indirectly by adjusting p-y curves in some appropriate manner. 

The prudent engineer should treat results of this program as an aid 

in the overall process of engineering analysis and design, not as the sole 

basis for design nor as the final word on how a laterally loaded deep 

foundation will perform. 

Computer program COM622 requires that p-y curves be computed accord

ing to the procedures presented in Chapter 3; the tables of p versus y 

then are used as input to COM622. Computer Program COM624 has been writ

ten in which the criteria for generating p-y curves are subroutines of the 

program and the engineer only has to specify soil properties, pile geom

etry, and the kind of loading (static or cyclic). COM624 is being dis

tributed only to a user• s group in order that the program can be 

maintained. An individual or firm who wishes information on the program 

and user's group can obtain it by writing to: The Geotechnical Engineer

ing Center, The University of Texas at Austin, College of Engineering, 

'Cockrell Hall 6.2, Austin, Texas 78712. 
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5.8 EXERCISES 

5.1 Derive equations for the case where the boundary conditions at 

the pile head are Pt and Mt/St. 
5.2 Derive equations for the case where the boundary conditions at 

the pile head are Pt and St. 
5.3 Solve the following example by hand computations using the dif-

ference equations and compare y and M with similar values for the t max 
11 long 11 pile case, 

Pile: 

using equations in Chapter 4. 

Loading: 

Soil: 

Number of 

24 in. in diameter by 1 in. wall thickness, 

length= 1200 in. 

free-head case, Pt= 40,000 lb 

Stiff clay, constant modulus E = 800 lb/sq in. 
s 

increments = 6 

(Note: the solutions should be identical except for the effect of length 

and the effect of inaccuracy due to the crude mesh size.) 

5.4 Repeat Problem 3 using COM622 and compare results. 

5.5 Repeat problems 4.1 and 4.2 in Chapter 4 using COM622. Check 

and compare results. Vary increment lengths and study errors. 
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CHAPTER 6. NONDIMENSIONAL METHOD FOR THE 

ANALYSIS OF LATERALLY LOADED PILES 

A nondimensional method for the analysis of laterally loaded piles 

was presented in Chapter 4 for the case where the soil modulus is con

stant. That solution has limited usefulness because almost never would 

the value of soil modulus be constant over the pile length. There is some 

value, however, in having nondimensional solutions for other variations 

of soil modulus with depth. Some such solutions are developed in this 

section. 

While nondimensional solutions can be developed for problems where a 

number of parameters are involved, a limited approach has been selected. 

Pile stiffness is assumed to be constant and the effect of axial loading 

is ignored. But nondimensional curves are developed, as shown below, for 

a number of variations of soil modulus with depth and for piles of various 

lengths (Matlock and Reese, 1962).* 

Considering the nonlinearity of p-y relations at various depths, Es 

is a function of both x and y. Therefore, the form of the E -versus-depth 
s 

relationship also will change if the loading is changed. However, it may 

be assumed temporarily (subject to adjustment of Es values by successive 

trial) that the soil modulus is some function of x only, or that 

Es= Es(x). (6.1) 

For solution of the problem, the elastic curve y(x) of the pile must 

be determined, together with various derivatives that are of interest. 

1he derivatives yield values of slope, moment, shear, and soil reaction as 

functions of depth. 

6.1 DIMENSIONAL ANALYSIS FOR ELASTIC PILES 

The principles of dimensional analysis may be used to establish the 

form of nondimensional relations for the laterally loaded pile. With the 

use of model theory the necessary relations will be determined between a 

"prototype" having any given set of dimensions, and a similar "model" for 

which solutions may be available. 

*Note: The derivations that are presented follow closely the referenced 

paper. 
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For very long piles, the length L loses significance because the 

deflection may be nearly zero for much of the length of the pile. It is 

convenient to introduce some characteristic length as a substitute. A 

linear dimension Tis therefore included in the quantities to be consid

ered. The specific definition of Twill vary with the form of the func

tion for soil modulus versus depth. However, it will be seen later that, 

for eac~ definition used, T expresses a relation between the stiffness of 

the soil and the flexural stiffness of the pile and is called the "rela

tive stiffness factor." 

For the case of an applied shear Pt and moment Mt the solution for 

deflections of the elastic curve will include the relative stiffness fac

tor and be expressed as 

y = y(x, T, L, Es, EI, Pt, Mt). (6.2) 

Other boundary values can be substituted for Pt and Mt. 
If the assumption of elastic behavior is introduced for the pile, and 

if deflections remain small relative to the pile dimensions, the principle 

of superposition may be employed. Thus, the effects of an imposed lateral 

load Pt and imposed moment Mt may be considered separately. If yA repres

ents the deflection due to the lateral load Pt and 

caused by the moment Mt, the total deflection is 

y=yA+yB. 

if y
8 

is the deflection 

(6.3) 

It is the ratios of YA 

generalized solutions 

to Pt and of y
8 

to Mt which are sought in reaching 

for the elastic pile. The solutions may be 

expressed for Case A as 

YA 
p = fA(x. T, L, Es' EI), 

t 
and for Case B as 

(6.4) 

YB 
M = f 8(x, T, L, Es, EI) , (6.5) 

t 
where fA and f 8 represent two different functions of the same terms. In 

each case there are six terms and two dimensions (force and length). 

There are therefore four independent nondimensional groups which can be 

formed. The arrangements chosen are, for Case A, 

X 

T 
L 
T 

E T4 
s 
EI 

(6.6) 
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and for Case B, 
YB EI 

M T2 
t 

X 

T 

L 

T 

E T4 
s 
EI 

( 6. 7) 

To satisfy conditions of similarity, each of these groups must be equal 

for both model and prototype, as shown below. 

X X 
___E_ = _.!!!. (6.8) 
T T p m 

L Lm 
___E_ = - (6.9) 

Tp T m 

E T 4 E T 4 
Sp p Sm m 

= (6.10) 
EI EI p m 

YA EI YA EI 
p p m m = (6.11) 

pt T 3 pt T 3 
p m p m 

YB EI YB EI p m 
p m = (6.12) 

M T 2 Mt T 2 
tp p m m 

A group of nondimensional parameters may be defined which will have 

the same numerical value for any model and its prototype. These are shown 

below. 

Depth Coefficient, 

Maximum Depth Coefficient, 

Soil Modulus Function, 

Case A Deflection Coefficient, 

Case B Deflection Coefficient, 
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Z - X - T 

z L 
max= T 

E T4 

=-s-
EI 

A 
YlI 

=--y p T3 
t 

B 
yBEI 

---y ~\ T2 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 



Thus, from definitions 6.13 through 6.17, for (1) similar soil-pile stiff

nesses, (2) similar positions along the piles, and (3) similar pile 

lengths (unless lengths are very great and need not be considered), the 

solution of the problem can be expressed from Eq. 6.3 and from Eqs. 6.16 

and 6.17, as 

= [L ] A + [ Mt T
2 

] 
y EI Y EI By. (6.18) 

By the same type of reasoning other forms of the solution can be 

expressed as shown below. 

Slope, = [ pt T
2 

] A + [ ~ ]- B 
EI s EI s 

(6.19) 

Moment, (6.20) 

Shear, (6.21) 

Soil Reaction, p =PA+ PB= (6.22) 

A particular set of A and B coefficients must be obtained as func

tions of the depth parameter, Z, by a solution_ of a particular model. 

However, the above expressions are independent of the characteristics of 

the model except that elastic behavior and small deflections are assumed. 

The parameter Tis still an undefined characteristic length and the vari

ation of Es with depth, or the corres~onding form of ¢(Z), has not been 

specified. 

While the relations derived above are applicable to step-tapered 

piles which are frequently used in construction, it is necessary that 

structural similarity be maintained between the mathematical model and 

the prototype. 

From beam theory, as presented earlier, the basic equation for an 

elastic beam is 

EI f2_ = p. 
dx 4 
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Introducing the definition of p = -E y, the equation for a beam on an 
s 

elastic foundation, or for a laterally loaded pile, is 

4 E 
!1 + 2. y = o. 
dx 4 EI 

(6.24) 

Where an applied lateral load Pt and an applied moment Mt are consid

ered separately according to principle of superposition, the equation 

becomes, for Case A, 

ct4yA Es 
ct/+ + EI y A = 0, (6.25) 

and for Case B, 

(6.26) 

Substituting the definitions of nondimensional parameters contained in 

Eqs. 6.13 through 6.17, a nondimensional differential equation can be 

written for Case A as 

d4A --f + ¢(Z)A = 0, 
dZ Y 

( 6. 27) 

and for Case Bas 
d 48 --f + ¢(Z)B = O. 

dZ Y 
(6.28) 

To produce a particular set of nondimensional A and B coefficients, 

it is necessary (1) to specify ~(Z), including a convenient definition of 

of the relative stiffness factor T, and (2) to solve the differential 

equations (6.27 and 6.28). The resulting A and B coefficients may then be 

us7d, with Eqs. 6.18 through 6.22, to compute deflection, slope, moment, 

shear, and soil reaction for any pile problem which is similar to the case 

for which nondimensional solutions have been obtained. 

Based on the boundary conditions Pt and Mt and the resulting A and B 

coefficients, relations have been derived so that problems may be solved 

for cases in which other boundary conditions are known. As shown later, 

nondimensional relationships have been derived so that almost any con

ceivable structure-soil-pile problem can be solved. 

To obtain the A and B coefficients that are needed to make solutions 

with the nondimensional method, Eqs. 6.27 and 6.28 can be solved by use of 
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difference equations. Coefficients for other types of boundary condi

tions can be obtained in a similar manner. 

6.2 DIMENSIONAL ANALYSIS FOR RIGID PILES 

Piles or posts having relatively shallow embedment are frequently 

encountered in practice. Such piles behave essentially as rigid members, 

and the difference-equation method used in the elastic-theory solutions 

may become inaccurate because of the small successive differences which 

are involved. For such cases, a simpler theory is applicable, in which 

the pile is considered to be a rigid member (Matlock and Reese, 1962). 

Although computations are simpler for the rigid pile than for the 

elastic pile, it is still convenient to use generalized. solutions and to 

consider separately the effects of applied lateral load and applied 

moment. 

In the derivation of the equations for the rigid pile it is conven

ient to include an additional term J that is later given particular defi

nitions. The definitions of J depend on the form of the variation of the 

soil modulus with depth. For the present, J is simply a constant having 

the same dimensions (force x length-2
) as the soil modulus E . . s 

For either Case A (Mt= 0) or Case B (Pt= O) there are a total of six 

factors to be considered. For Case A, 
YA= YA (x,L,Es,J,Pt), (6.29) 

and for Case B, 
(6.30) 

In each trial computation in an actual design problem, the soil is consid

ered to be elastic. Thus, for either Case A or Case B, it is the ratio of 

deflection to loading which is sought in reaching generalized solutions. 

This reduces the number of nondimensional groups to three. For Case A 

these are 

yAJL X E s (6.:n) 
pt ' L , J ' 

and for Case B, 
y JL2 X E 

B s (6.32) 
Mt 

, L J 
For similarity between a prototype and a computed model, each nondimen-

sional group may be defined as a dimensionless parameter. These are as 

shown below. 
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Depth Coefficient, 

Soil Modulus Function, 

Case A Deflection 
Coefficient, 

Case B Deflection 
Coefficient, 

By superposition, the total deflection is 

y=yA +yB 

X 
h = I 

¢(h) 

a 
y 

J 

From reasoning similar to the above, other forms of the 

be expressed as showh below. 

Slope, S =SA+ SB = [ ;L\] "s + LML\] bs 

Moment, M = MA+ MB = [PtL] am + [Mt] bm 

Shear, V = VA+ VB = [Pt] av + [ Mlt] bv 

Soil Reaction, p = PA+ PB = [~]a +[Mt]b 
L P L 2 P 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

solution can 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

For any given problem the slope (S = dy/dx) is a constant and all higher 

derivatives of y are zero. The last three expressions are related to the 

first two through the relation between soil reaction and pile deflection, 
E = -p (6.43) 

s y 
or, in terms of the nondimensional coefficients, 

-a -b 
¢(h) = ~ = ~ 

a b 
(6.44) 

y y 
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The above dimensional analysis will apply to any form of the soil modulus 

functions Es or ¢(h). The soil modulus constant J is to be defined subse
quently. 

The nondimensional soil modulus function ¢(h) is equivalent to the 

corresponding function ¢(Z) used with the elastic-pile theory except that 

¢(h) is related to the length of the pile rather than to a relative stiff

ness between the pile and the soil. 

For any given ¢(h), there exists a single set of nondimen

sional-coefficient curves (for deflection, slope, moment, shear, and soil 

reaction). Design problems may be solved by essentially the same proce

dures as for the elastic-pile case. The choice of which theory to use is 

aided by comparing the results of nondimensional solutions obtained by the 

two methods. 

The equation for deflection y of a rigid pile is 

y=yt+Sx (6.45) 
where yt is the deflection at x = 0 and Sis the constant slope of the 

pile. The soil reaction is 

p = -Esyt - Es S x. (6.46) 

By statics, the equation for shear is 

V = Pt + J ~ pdx. ( 6. 47) 

Substituting the expression for pin Eq. 6.46 into Eq. 6.47 yields 

V = Pt -yt J
0
xEsdx - SJ~ xEsdx. 

The equation for moment is 
X 

M = Mt + Vx - J
O 

xpdx, 
or, 

(6.48) 

(6.49) 

M = M + Vx + y J x xE + S J x x 2 E dx. ( 6. 50) 
t t O S O S 

The shear and moment are zero at the bottom of the pile. Thus, the 

following equations may be written from Eqs. 6.48 and 6.50 so that yt and 

Smay be evaluated by simultaneous solution. 

Pt = yt J L E dx + S J L xE dx 
ol s o Ls 

Mt= -yt J
O 

xEsdx - SJ 
O 

x2 Esdx 
The values obtained for yt and Sare then 

and 6.50 to complete the solution. 

(6.51) 
(6.52) 

substituted into Eqs. 6.48 

As in the procedure used in the elastic-pile theory, unit values may 

be introduced into the solution to obtain numerically correct values of 

the nondimensional coefficients defined in Eqs. 6.33 through 6.36. This 

amounts to determining the nondimensional coefficients from the results 
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of a numerically convenient model having unit values of L, Pt, and Mt. 

Coefficients in Es(x) are chosen to agree with those in the soil modulus 

function ¢(h), and J is thus made equal to unity. 

6.3 FORMS OF VARIATION OF SOIL MODULUS WITH DEPTH 

In solving problems of laterally loaded piles by using nondimen

sional methods, the constants in the expressions describing the variation 

of soil modulus Es with depth x are adjusted by trial until reasonable 

compatibility is obtained. The selected form of the soil modulus with 

depth should be kept as simple as possible so that a minimum number of 

constants needs to be adjusted. 

Two general forms are a power form, 
E = kxn 

s 
and a polynomial form, 

Es= k
0 

+ k1x + k2x2
• 

The form Es= kx is seen to be a special case of either of these. 

similar to Eq. 6.53 has been suggested previously (Palmer and 

1954). 

(6.53) 

(6.54) 

A form 

Brown, 

The relative stiffness factor T of the elastic-pile theory and the 

soil modulus constant J of the rigid-pile theory must be defined for each 

form of the soil modulus-depth relation. While T and J may be defined in 

any way, it is convenient to select definitions that will simplify the 

corresponding nondimensional functions. 

From the elastic-pile theory, Eq. 6.15 defining the nondimensional 

function for soil modulus is 

E T4 

¢(Z) = _s_ 
EI 

If the form E = k xn is substituted in Eq. 6.15, the result is s 

(6.55) 

For the elastic-pile case, it is convenient to define the relative stiff

ness factor T by the following expression. 

Tn+4 = I!_ 
k 

Substituting this definition into Eq. 6.55 gives 

xnT4 ·[_Tx] n. ¢(Z) = Tn+4 = 
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Because x IT= Z, the general nondimensional function for soil modulus is 
¢(Z)=Zn. (6.58) 

The above expression contains only one arbitrary constant, the power n. 

Therefore, for each value of n which may be selected, one complete set of 

independent, nondimensional solutions may be obtained from solution of 

Eqs. 6.27 and 6.28. For relatively short, elastic piles, separate compu-

tations must be made for each Z considered. max 
Appendix 4 contains a number of tables for making solutions using 

nondimensional methods. Tables A4.l through A4.6 are for elastic piles 

and for the case where E = kx n. One of the tables is for the case where n s 
= 0, or Es is a constant, and another table is for the case where n = 1, or 

Es = kx. All of the tables are for the case where the nondimensional 

length of the pile is 10, that is, the pile acts as a 11 long 11 pile. A cover 

page is placed with the tables to provide a summary of the important 

equations and to show the general shape of the functions. Five additional 

sets of nondimensional coefficients are referenced subsequently; the same 

general format was employed in presenting each set of tables. 

From the ri gi d-pil e theory the function for soil modulus has been 

defined by Eq. 6.34 as ¢(h) = E /J. If the soil modulus constant J is now s 
defined as 

J = kl n (6.59) 
' 

the corresponding general nondimensional function for soil modulus is 
n 

~(h) = ~ (6.60) 
kln 

or, since h = x / L, 
¢(h)=hn. (6.61) 

Only one set of nondimensional curves will be needed for each selected 

value of n, regardless of the length L. 
Nondimensional coefficients for rigid piles for the case where E = 

s 
kxn are presented in Tables A4.7 through A4.12 in Appendix 4. 

When a polynomial is used to express the form of the soil modulus 

variation with depth, the relative stiffness factor T, or the soil modulus 

constant J, may be defined to simplify only one of the terms in the poly

nomial . 
For the elastic-pile case, introducing the polynomial form into Eq. 

6.15 gives 
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¢(Z) 
kT4 k rs 
o 1 =--+--
EI EI 

X 
- + 
T 

k T6 
2 
EI 

(6.62) 

To simplify the second term, as an example, T may be defined by the fol

lowing expression. 

rs = I!. 
kl 

The resulting soil modulus function is 

where 

<t>(Z)=r
0

+Z+r
2

z2 

- ko 1 
ro - ½ T 

k2 
r2 = k [T) 

1 

, and 

For the rigid pile theory, from Eq. 6.34, 

k
0 

kl x k2x2 

¢(h) = - + - + -- •••• 
J J J 

Again to simplify the second term, J is defined by 

J = k L 1 
and 

¢(h) 

or 

<t>(h) = r
0 

+ h + r
2 

h2 

where h = x /Land 
k 

r
0 
=-

0
, and 

k1L 

_ k2L 
r2 - -k- • 

1 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

( 6. 67) 

(6.68) 

(6.69) 

(6.70) 

(6.71) 

(6.72) 

A separate set of nondimensional curves would be needed for each 

desired combination of r-constants. Because of the complexity which oth-

erwise would result, it does not appear reasonable to vary more than one 

constant and such forms as those following appear to be about as compli

cated as should be considered. 

<t>(Z) = r + Z 
0 

<t>(Z) = r + Z2 

0 

(6.73) 

(6.74) 

While it would be permissable for some of the r-constants to have negative 
values, care must be taken that¢ does not become negative. 
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Nondimensional coefficients for elastic piles for the case where E = s 
k

0 
+ k1x are presented in Tables A4.13 through A4.18. Nondimensional 

coefficients for rigid piles for the case where Es= k
0 

+ k1x are pre

sented in Tables A4.19 through A4.24. 

Because of the utility of employing the relatively simple variation 

of Es with depth, Es= kx, tables are included in Appendix 4 for that form 

of variation of E . The coefficients are presented in Tables A4.25 s 
through A4.40. The next section gives some details on solutions with Es= 

kx; in that section the nondimensional coefficients for Es= kx are shown 

as curves. 

6.4 SOLUTION PROCEDURES 

Reese and Matlock (1956) presented several arguments for the use of 

E = kx as a viable variation in the soil modulus with depth. McClelland s 
and Focht (1958) made 

test, and as noted in 

as defining the early 

use of E = kx s in analyzing the results of a field 

Chapter 3, E = kx is recommended in some instances s 
part of p-y curves. Further, an examination of the 

recommended families of p-y curves reveals that the ultimate resistance is 

always lower at the ground surface for soils with constant shear strength 

with depth. That fact, coupled with the fact that computed deflections 

are larger near the ground surface leads to the idea of an increasing soil 

modulus with depth (but does not necessarily suggest a zero modulus at the 

ground surface for clays). 

A number of authors have suggested the use of Es= kx and the nondi

mensional curves presented herein in solving the problem of the pile under 

lateral loading (Department of Navy, 1971; George and Wood, 1976; Poulos 

and Davis, 1980). 

As was shown earlier, solutions are available for more complicated 

variations in E with depth than E = kx; however, the use of E = kx is a s s s 
favorable choice at least for the initial computations. 

Prior to initiating the solution procedures, it is desirable to reit

erate the limitations of the nondimensional method: the effect of axial 

load on bending cannot be investigated, and the pile stiffness must be 

assumed to be constant. Of course, all of the limitations imposed during 

the derivation of the differential equation, e.g., no shear distortion and 

small deflections, are also present. The solution procedure is described 

below for three sets of boundary conditions at the top of the pile: 
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1) pile head free to rotate, 2) pile head fixed against rotation, and 3) 

pile head restrained against rotation (Reese and Matlock, 1956). 

Case I - Pile Head Free to Rotate 

1. Construct p-y curves at various depths by procedures recom

mended in Chapter 3, with the spacing between p-y curves 

being closer near the ground surface than near the bottom of 

the pile. 

2. Assume a value of T, the relative stiffness factor. The 

relative stiffness factor is given as: 

5 
T = IEI/k (6.75) 

where 

EI= flexural rigidity of pile, and 

k = constant relating the secant modulus of soil 

reaction to depth (Es= kx). 

3. Compute the depth coefficient z , as follows: max 

(6.76) 

4. Compute the deflection y at each depth along the pile where 

a p-y curve is available by using the following equation: 

P T3 M T2 

y = Ay ½+By½ 
where 

Ay = deflection coefficient, found in Fig. 6.1, 

Pt= shear at top of pile, 

T = relative stiffness factor, 

B = deflection coefficient, found in Fig. 6.2, y 
Mt = moment at top of pile, and 

EI = flexural rigidity of pile. 

(6.77) 

The particular curves to be employed in getting the AY and 

B coefficients depend on the value of z computed in Step y max 
3. 

5. From a p-y curve, select the value of soil resistance p that 

corresponds to the pile deflction value y at the depth of 

the p-y curve. Repeat this procedure for every p-y curve 

that is available. 
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Fig. 6.1. Pile deflection produced by lateral load 
at groundline (Reese and Matlock, 1956). 
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6. Compute a secant modulus of soil reaction Es using Es = 

-p/y. Plot the Es values versus depth. 

7. From the Es vs. depth plot in Step 6, compute the constant k 

which relates E to depth (k = E /x). Give more weight to s s 
the Es values near the ground surface. 

8. Compute a value of the relative stiffness factor T from the 

value of k found in Step 7. Compare this value of T to the 

value of T assumed in Step 2. Repeat Steps 2 through 8 

using the new value of Teach time until the assumed value 

of T equals the calculated value of T. 

9. When the iterative procedure has been completed, the values 

of deflection along the pile are known from Step 4 of the 

final iteration. Values of soil reaction may be computed 

from the basic expression: p = -E y. Values of slope, s 
moment, and shear along the pile can be found by using the 

following equations: 

and 

P T2 MtT 
S=A _t_+B 

s EI s EI 

M 
V=AP +B _! 

V t V T 

(6.78) 

(6.79) 

The appropriate coefficients to be used in the above 

equations may be obtained from Figs. 6.3 through 6.8. 

Case II - Pile Head Fixed Against Rotation. Case II may be used to 

obtain a solution for the case where the superstructure translates under 

load but does not rotate and where the superstructure is very, very stiff 

in relation to the pile. 

1. Perform Steps 1, 2, and 3 of the solution procedure as for 

free-head piles, Case I. 

2. Compute the deflection y at each depth along the pile where 

a p-y curve is available by using the following equation: 
p T3 

YF =FY½-. (6.80) 

The deflection coefficients F y may be found by entering 

Fig. 6.9 with the appropriate value of z . max 
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3. The solution proceeds in steps similar to those of Steps 5 

through 8 for the free-head case. 

4. Compute the moment at the top of the pile Mt from the fol

lowing equation: 

Mt= F mt pt T 
The value of Fmt may be found by entering Table 6.1 with the 

appropriate value of zmax· 

TABLE 6.1. MOMENT COEFFICIENTS AT TOP OF PILE 
FOR FIXED-HEAD CASE. 

2max Fmt 

2 -1.06 

3 -0.97 

4 -0.93 

5 and above -0.93 

5. Compute values of slope, moment, shear, and soil reaction 

along the pile by following the procedure in Step 9 for the 

free-head pile. 

Case III - Pile Head Restrained Against Rotation. Case III may be 

used to obtain a solution for the case where the superstructure translates 

under load and where pile-head rotation is restrained. 

1. Perform Steps 1, 2, and 3 of the so 1 ut ion procedure for 

free- head piles, Case I. 

2. Obtain the value of the spring stiffness k
8 

of the pile 

superstructure system. The spring stiffness is defined as 

fo 11 ows: 

where 

Mt= moment at top of pile, and 

St= slope at top of pile. 
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3. Compute the slope at the top of the pile St as follows: 

PtT2 MtT 
st= Ast CT+ Bst EI (6.84) 

where 

Ast= slope coefficient, found in Fig. 6.3, and 

Bst = slope coefficient, found in Fig. 6.4. 

4. Solve Eqs. 6.83 and 6.84 for the moment at the top of the 

pile Mt. 
5. Perform Steps 4 through 9 of the solution procedure for 

free-head piles, Case I. 

This completes the solution of the laterally loaded pile problem for 

three sets of boundary conditions. The solution gives values of 

deflection, slope, moment, shear, and soil reaction as a function of 

depth. To illustrate the solution procedures, an example is presented. 

6.5 SOLUTION OF EXAMPLE PROBLEM, ASSUMING E
5 

= kx 

Find the deflection, moment and shear as a function of depth along a 

pile that is free to rotate and is subjected to a horizontal force and a 

moment. The p-y curves are to be constructed at 0, 2, 4, 8, 12, 16, and 24 

ft. The soil is a stiff clay above the water table. Other data for the 

problem are shown below. 

Pt= 35,000 lbs 

Mt= 3.02 x 10 7 in.-lbs 

L = 60 ft 

b = 2 ft 

EI= 7.39 x 10 10 lb-sq in. 

c = 1,000 lb/sq ft 

l = 110 lb/cu ft 

N = 1,000 cycles 

The solution will proceed in the step-by-step manner as described for 

Case I. 

1. Construct p-y curves. 

- Assume £SO= 0.01 in the absence of stress-strain curves. 

- Compute p as the smaller of the values from Eqs. 3.18 and 
u 

3.19 for depths of 0, 24, 48, 96, 144, 192, and 288 in. 

- Compute Yso from Eq. 3.20 and compute points on the p-y 

curves for short-term static loading using Eq. 3.37. 
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- Compute y values for cyclic loading by use of Eq. 3.39 The 

results of the computations are shown in Table 6.2 and in 

Fig. 6.10. 

TABLE 6.2. COMPUTED p-y CURVES*. 

Depth, in. 0 24 48 96 144 192 288 

Ystatic Ycvclic P, lb/in. 

0.000 0.000 0 0 0 0 0 0 0 

0.001 0.003 51 63 75 99 123 147 152 

0.015 0.04 100 123 147 195 243 291 299 

0.24 0.67 199 247 294 390 485 580 596 

0.60 l.68 250 310 370 490 610 730 750 

l. 24 3.48 300 372 444 588 731 875 899 

2.50 7.00 357 443 529 700 872 1043 1072 

5.00 14.00 425 527 629 833 1036 1240 1274 

9.60 26.88 500 620 740 980 1220 1460 1500 

*p-y cyclic curves are plotted in Fig. 6.10 

2. Assume T: T = 125 in. The corresponding k is 2.42 cu in. 

X 60(12) 
3. Compute z • z = ~ = --- = 5.76 · max · max T 12 5 
4. Compute the deflection y at depths of 0, 2, 4, 8, 12, 16, 

and 24 ft using Eq. 6.77. (Use Figs. 6.1 and 6.2; the com

putations are tabulated in Table 6.3.) 
5. From the set of p-y curves (Fig. 6.10 and Table 6.2), the 

values of pare selected corresponding to they-values com

puted in Step 4. (See tabulation in Step 6.) 
6. Compute the E value at each depth (see Table 6.4). s 
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Fig. 6.10. Plot of p-y curves for example problem, stiff clay 
above water table, cyclic loading, 

7. A plot of E vs. depth is shown in Fig. 6.11. The k value s 
is: 

500 k = Es/x = 303 = 1.65 lb/cu in. 

8. Compute T: 

T = 5
/EI/k = ,V7 · 39 x 1010 = 136. 1126. 1.65 in. in. 
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TABLE 6.3. COMPUTED DEFLECTIONS. 

x, in. 2 Ay YA' in. By YB' in. . * y' ,n. 

0 0 2.40 2.22 1.62 10.34 12.56 

24 0.19 2.07 1. 91 1.29 8.24 10.15 

48 0.38 1. 78 1.65 1.02 6.51 8.16 

96 0. 77 1. 23 1.14 0.58 3.70 4.84 

144 1.15 0.76 0.70 0.25 1.60 2.30 

192 1. 54 0.38 0.35 0.05 0.32 0.67 

288 2.30 

P T3 M T2 

*y t t (6.77) = AyEI + By EI 

TABLE 6.4. COMPUTED VALUES OF SOIL MODULUS. 

x, in. y, in. p, lb/in. Es, lb/sq in. 

0 12.56 411 33 

24 10.15 481 47 

48 8.16 546 67 

96 4.84 631 130 

144 2.30 652 283 

192 0.67 580 866 

288 
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Fig. 6 .11. Trial plots of soil modulus values (The first trial 
corresponds to computations in Table 6.4.). 

This completes the first iteration of tpe solution procedure. Before 

proceeding to the next iteration, the results thus far will be examined 

for guidance with regard to further computations. 

It is evident from Fig. 6.11 that E = kx is not a good represen-s 
tation of the variation of the soil modulus with depth. A straight line 

passing through the origin does not fit the plotted points. At this point 

it could be desirable to use the nondimensional solutions based on a power 

or polynominal function (these solutions are presented later in this chap
ter). However, the solution will proceed by use of the nondimensional 
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curves based on Es= kx in order to gain an approximate idea of the final 

design. 

The solution has not been found because the k that was tried is not 

equal to the k that was obtained. Rather than making the next trial with a 

T of 136 in. (the value obtained in the first trial); it is preferable to 

select a larger value in order to speed the convergence; so a value of 145 

in. is selected for the next trial. The selected value of T for the second 

trial corresponds to a k of 1.15 lb/cu in. 

The computation of values of soil modulus for the second trial are 

not shown but proceed as shown in Tables 6.3 and 6.4. The plot of the val

ues of soil modulus for Trial 2 is shown in Fig. 6.11. The value of k was 

found to be 1.20 lb/cu in., leading to a value of T of 144 in. The values 

of T that were tried and those obtained for each of the trials are shown in 

Fig. 6.12. As may be seen in the figure, convergence was achieved with a 

value of T of 143 in. 

150 

o+~i2 

140 Trial I 

' 
\ Final T = 143 in. 

,......,+ 

130 

120------L-----J..----..__ __ _ 
120 130 140 150 

Fig. 6.12. Interpolation for final value of relative 
stiffness factor~ 

124 



9. Compute the values of moment and shear using Eqs. 6.79 and 

6.80 (see Fig. 6.13). Also shown in Fig. 6.13 are plots of 

the moment and shear diagrams from a computer solution of 

the example problem. 

As may be seen, excellent agreement is found between the computer 

solutions and the nondimensional solutions. This good agreement may be 

fortuitous; however, it is not unusual to get reasonably good agreement 

between solutions by computer and those by the nondimensional procedure. 

The example is presented to illustrate the computational procedure 

and not as an exercise in design. As noted earlier, computations should 

be performed for a number of loads in making a design and parametric stu

dies are desirable. 

6.6 SOLUTION OF EXAMPLE PROBLEM, Es = kxn AND Es = ko + kl x 

As shown in Fig. 6.11, the computed values of Es vs. x failed to pass 

through the origin but, except for that, seemed possibly to follow a para
n bolic curve. Therefore, it was decided to try the use of E = kx and to s 

see if a better fit to the computer solution could be obtained. 

The first step was to use T of 143 in. and to compute the Es values at 

points where p-y curves were available. These points are plotted in Fig. 

6.14. The next step was to find the best fit of a parabola through those 

points (shown as circles in Fig. 6.14). The analytical fitting of a para

bola proved unproductive because, in spite of appearances, the points from 

the Es= kx solution do not follow the parabolic equation. 

The next step was to make some trial fits with selected values of k 

and n. This latter procedure is perhaps preferable to analytical fitting 

because the engineer can insure a better fit near the groundline where 

soil resistance has more influence on pile behavior. Two trials were made 

with different values of k and n and the results are shown in Fig. 6.14. 

The values in Trial 2 were thought to be preferable. 

Tables A4.l through A4.6 were then consulted and it was found that a 

table was not available for a value of n of 1.2. Tables were available for 

n = 1 (E = kx) and n = 2. s 
of k that would yield the 

It was decided to use n = 2 and to find values 

best fit to E from p-y curves. An alternate 
s 

procedure would have been to use double interpolation; that is, interpo-

lating with z as an argument using tables with n = 1 and n = 2, and then 

interpolating again with n as the argument. This latter procedure did not 
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seem attractive. Of course, the computer program could be used to develop 

additional nondimensional coefficients; however, it seems undesirable to 

have large numbers of curves or tables. 

Several trials were made with the table for n = 2 and it soon became 

apparent that the use of Es= kx 2 was not yielding a good fit at all to the 

early part of the points for E versus x from the p-y curves. The computed s 
curves for n = 2 are relatively quite steep near the origin; thus, the 

value of E at x = 0 (which is almost constant) could not be fitted and the 
s 

fitting was deviating further and further from other values near the 
n groundl i ne. Therefore, the use of E = kx was abandoned for the examp 1 e 

s 
problem. 

The procedure continues with the use of Es= k0 + k1x. A trial was 

made by fitting a straight line, not passing through the origin, through 

points shown for Es= kx in Fig. 6.14. The value selected for k0 was 20 

lb/sq in. and for k1 was 0.93 lb/cu in. With these values the following 
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computations were made: 

T = EI l/ 5 = 151.37 in. 
½ 

ko 
0.142 --

k1T 

z = 4.75. max 

The "long" pile solution could be used and values were taken from Tables 

A4.13 and A4.14. The double interpolation for values of AY and BY is 

shown in Table 6.5. The values of E shown in Table 6.5 agree well with 
s 

the values computed using E = kx with a T of 143 in. Therefore, it was s 
decided to make no further trials. 

Tables A4.13 and A4.14 were used to interpolate values of the coeffi

cients for shear and moment. Computations were made and curves of com

puted deflection, moment, and shear are shown in Fig. 6.15. Also shown in 

the figure are similar curves obtained from the computer program. 

An examination of the figure shows that the more complicated form of 

soil modulus with depth gave little or no improvement. The curves for 

deflection, moment, and shear as computed by Es= k0 + k1x are very close 

to those computed with Es= kx. 

6. 7 AL TERNA TE SOLUTION TO RESTRAINED-HEAD CASE 

Earlier in this chapter a procedure was presented for dealing with 

the problem where the pile head is attached elastically to the superstruc

ture. Thre is an alternate solution to the restrained-heqd problem, as 

will be shown in this section. The solution is presented in connection 

with an example (Matlock and Reese, 1961). The solution is developed for 

the case where Es= kx. Solutions for other variations of Es with x are 

possible but the desirability for these other solutions is questionable. 

A typical offshore structure is shown in Fig. 6.16. While an off

shore structure is used as an exmple, the method applies equally well to a 

bridge bent. The specific problem considered is that of solving for the 

bending moments in the portion of the structural system which lies beneath 

the soil surface. In erecting such a structure, a prefabricated weld

ed-pipe framework or "jacket" is set in place on the ocean bottom and pipe 

piles are driven through the vertical members of the jacket. 
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X 

in. 

0 

24 

48 

96 

144 

192 

-~ 
k1T 

z A y 

0.000 2.151 

0.159 1. 918 

0.317 1.690 

0.634 1.258 

0.951 0.880 

1.268 0.569 

TABLE 6.5. COMPUTED VALUES OF SOIL MODULUS, Es = ko + klx . 

0.1 0.2 0.142 

By A B A B YA YB y p Es 
y y y y in. in. in. lb/in. lb/in. 

1.468 1.930 1.348 2.058 1.41E 3.38 13.28 16.66 440 26 

1. 218 1. 717 1.109 1.834 1.082 3.01 10.13 13.14 517 39 

0.993 1.508 0.895 1. 656 0.952 2. 72 8.91 11.63 595 51 

0.616 1.114 0.540 1.198 0.584 1. 97 5.47 7.44 708 95 

0.333 0. 771 0. 277 0.834 0.309 1. 37 2.89 4.26 762 179 

0.135 0.491 0.097 0.536 0.119 0.88 1.11 L 99 755 379 
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Fig. 6.16. Lateral forces applied to an offshore structure, 
Example Problem 2 (Matlock and Reese, 1961). 

The elastic elements of the problem are described in Fig. 6.17. The 

annular space between the pile and the jacket column is assumed to be 

grouted so that the two members will bend as a composite section. This is 
' frequently, but not always, done in actual practice. 

The elastic angular restraint provided by the portion of the struc

ture above the soil may be analyzed by determining the moment required to 

produce a unit value of rotation at the connection. This value, and the 

imposed lateral load, constitute the boundary conditions for this partic

ular problem. For the example problem, for each pile the elastic angular 

restraint Mt/St is equal to 6.176 x 10 9 in.-lb/radian and the lateral load 

Pt is equal to 150,000 lb. 
The force-deformation characteristics of the soil are described bya 

set of predicted p-y curves, as shown in Fig. 6.18. 
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elastic elements of the 
problem (Matlock and 
Reese, 1961). 
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As shown earlier in this chapter, the deflection y for the case where 

Es= kx is 

P T3 M T2 

y=A _!_+B _t_ 
Y EI Y EI 

(6.77) 

where EI is the flexural rigidity of the pile and where Tis the relative 

stiffness factor, defined by 

Ts = _Q_ k • (6.75) 

It is convenient to define an additional set of nondimensional deflection 

coefficients by rearranging Eq. 6.77 as follows: 

p T3 
t 

y = Cy EI ' 
where, at any depth coefficient Z, 

M 
C A + _t B • 
Y = Y PtT Y 

(6.85) 

(6.86) 

Depending on the angular restraint provided by the structure, values 

of Mt/PtT will range from zero for the pinned-end case to -0.93 for the 

case where the structure prevents any rotation of the pile ahead. Values 

of CY are given by the curves in Fig. 6.19. Tables for Cy are also 

included in Appendix 4 and are Tables A4.33 through A4.40. 

To begin the solution of the example problem it is necessary to 

assume, temporarily at least, that the form of soil modulus variation E = 
s 

kx will be a satisfactory approximation of the actual final Es variation. 

Also, available nondimensional solutions are limited to a pile of constant 

bending stiffness. For the example hand solution, the pile stiffness will 

be assumed equal to that of the combined pile and jacket leg. 

The slope at the top of the pile is 

PtT2 MtT 
S = A -- + Bs EI ' 

t st EiC t c 
( 6. 87) 

where the subscript t indicates values at Z = 0. The relation between Mt 
and St from Fig. 6.17 is 

s = h Mt. (6.88) 
t 3.5 EiC 
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Fig. 6 .19. Nondimensional coefficients for lateral deflection of a pile, 
assuming soil modulus proportional to depth, or Es= kx, 
long pile case Zmax 5 to 10. 

Combining Equations 6.87 and 6.88, and rearranging, 

Mt As T -1.623T -T t -= = = 
PtT h ~~~ + 1.750T 42.25 + 1.078 T T.""5" - B T • st 

(6.89). 

Because the relative stiffness factor T depends on the coefficient of soil 

modulus variation k and this quantity in turn depends on nonlinear soil 

resistance characteristics, as noted earlier the solution must proceed by 

a process of repeated trial and adjustment of values of T (or k) until the 

deflection and resistance patterns of the piles are made to agree as 

closely as possible with the resistance-deflection (p-y) relations previ-
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ously estimated for the soil and shown in Fig. 6.18. Also, as noted ear

lier, even though the final set of soil moduli (Es= -p/y) may not vary in 

a perfectly linear fashion with depth, proper fitting of Es= kx will usu

ally produce satisfactory solutions. 

For the first trial, Twill be assumed equal to 200 in. From Eq. 

6.89 the corresponding value of Mt/PtT is -0.776. For this value of 

Mt/PtT, values of CY are interpolated from Fig. 6.19 and are given in 

Table 6.6 at depths corresponding to the positions of the several p-y 

curves of Fig. 6.18. Values of deflection y are then computed at each 

depth. By reference to Fig. 6.18, values of soil resistance pare 

obtained, and soil modulus values E are computed. s 

TABLE 6.6. SAMPLE COMPUTATIONS FOR FIRST TRIAL. 

Depth Depth Deflection Deflection Soil Soil 
Coefficient Coefficient Resistance Modulus 

X z C y p Es y 

from p T3 from 
X Fig. 6.16 C t Fig. 6.15 =.:£_ = f = 

~ y y 

in. --- --- in. lb/in. lb/sq in. 

30 0.15 1.13 3.20 -132 41 

60 0.30 1.06 3.00 -285 95 

90 0.45 0.99 2.81 -420 149 

150 0.75 0.82 2.32 -578 249 

240 1. 20 0.57 1. 62 -675 416 

Values of soil modulus from the first trial are plotted versus depth 

as shown in Fig. 6.20. A straight line through the origin is fitted to the 

points, with more weight being given to points at depths less than x ~ 

0.5T than at greater depths. For this straight line, the coefficient of 

soil modulus variation resulting from the first trial is computed as 
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Soil Modulus, E ( lb/sq in.) 
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• 250L---------'---'--------'---' 

Fig. 6.20. Trial plots of soil modulus values. The first 
trial corresponds to computations in Table 6.5. 

E 
k = -2.. = 1.6 lb/cu in. 

X 

The correspondng value of the relative stiffness factor is 

T(obtained) = -R- = 194 in. 

(6.90) 

(6.91) 

If the value of T(obtained) were equal to the value of T(tried)' the proc
ess would have been completed. To facilitate additional estimating and to 

reach closure with a minimum of trials, a plot of T-values is used, as 

shown in Fig. 6.21. Two trials will usually allow interpolation for the 

final value of T. A final set of computations for Es values is then made 

as a check. 

6.8 CONCLUDING COMMENT 

While the nondimensional methods described above are satisfactory 

for many problems, most laterally-loaded piles can be analyzed efficient
ly by means of a computer program such as COM622. 
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Fig. 6.21. Interpolation for final value 
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As stated previously, the program uses successive differ

ence-equation computations based on repeated reference to the p-y curves 

to determine at increments along the pile the values of soil modulus. The 

procedure insures both compatibility and equilibrium for the soil, the 

pile, and the superstructure. Some of the advantages of using the comput

er program are given below. 

1. Step changes in the flexural stiffness of the pile may be 

introduced at any depth. 

2. The pile length may be changed as desired. 

3. The boundary conditions at the top of the pile may be speci

fied as the lateral load and a) the moment, b) slope, and c) 

the rotational spring constant moment/slope). In addition, 

an axial load may be specified. 

However, the nondimensional method should be employed on almost 

every occasion as a check of the computer solution or to give preliminary 

design information. 
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6.10 EXERCISES 

1. The pile shown below is subjected to cyclic loading. The pile 

head is restrained against rotation. Analyze the pile response by: 

(a) Computer program, and 

(b) Hand calculation using nondimensional Cy curves. 

Soil conditions: 

Soft saturated clay deposit with the following properties: 

cu= 500 lb/sq ft 

y' = 45 lb/cu ft 

E:50 = 0.01 

E = kx s 

k = 300 lb/cu in. 
(c) Repeat the problem with pile head 

(i) free to rotate 

(ii) fixed against rotation 

axial load = 10,000 lb 

fl = 20,000 lb j ~ = 6.11 x IQ7in,lb 

180
11 

r 
7201 

1 
D = 16 11 

2. Rework the problem given in the example in 6.5 with the applied 

moment equal to zero. 
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3. Rework the problem given in the example in 6.5 with the load and 

moment decreased to 15, 45, and 75 percent of the values used in the exam

ple. 

4. Develop p-y curves for a sand below water,¢= 36°, r' = 50 lb/cu 

ft, and cyclic loading. Find the groundline load versus deflection up to 

the point where the maximum steel stress is 30 ksi, keeping the applied 

lateral load and moment at the same ratio as given in the example. 

5. Rework the problem given in 6.7 assuming no jacket-leg extension 

(use EI of pile alone) and compare results with computer solution. 

6. Use the computer and develop nondimensional curves for E
5 

= kxn 

where n is equal to 1.2, 1.4, 1.6, and 1.8. 
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CHAPTER 7. OTHER METHODS OF DESIGN 

Three methods for the design of piles under lateral loading are 

reviewed that differ from the p-y method previously presented. However, 

there are common features in all of the methods. 

7. 1 BROMS METHOD 

The method was presented in three papers published in 1964 and 1965 

(Broms, 1964a, 1964b, 1965). As shown in the following paragraphs, a pile 

can be designed to sustain a lateral load by solving some simple equations 

or by referring to charts and graphs. 

Ultimate Lateral Load for Piles in Cohesive Soil. 

Broms adopted a distribution of soil 

resistance, as shown in Fig. 7.1, that 

allows the ultimate lateral load to be com-

puted by equations of static equilibrium. 

The elimination of soil resistance for the 

top 1.5 diameters of the pile is a result 

of lower resistance in that zone because a 

wedge of soil can move up and out when the 

pile is deflected. The selection of nine 

times the undrained shear strength times 

the pile diameter as the ultimate soil 

resistance, regardless of depth, is based 

on calculations with the soil flowing from 

the front to the back of the pile. 

Short, Free-Head Piles in Cohesive 

Soil. For short piles that are unres

trained against rotation, the patterns that 

Fig. 7 .1. 

I 9cb -I 

Assumed distri
bution of soil 
resistance for 
cohesive soil. 

were selected for behavior are shown in Fig. 7.2. The following equation 

results from the integration of the upper part of the shear diagram to the 

point of zero shear (the point of maximum moment) 

Mpos = P(e + 1.Sb + f) - 9cbf 2 /2. max 
But the point where shear is zero is 

Therefore, 

f = P/9 cb. 

Mpos = P(e + l.Sb + a.Sf). max 
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p 

e 

L 

~ 
9cb 4.5cbg 

p 

Fig. 7.2. Deflection, load, shear, and moment diagrams 
for a short pile in cohesive soil that is 
unrestrained against rotation. 

Integration of the lower portion of the shear diagram yields 
Mpos = 2. 25cbg 2 • 

max 
It may be seen that 

L = ( 1. Sb + f + g). 

(7.4) 

( 7. 5) 

Equations 7.2 through 7.5 may be solved for the load Pult that will pro

duce a soil failure. After obtaining a value of Pult the maximum moment 
can be computed and compared with the moment capacity of the pile. An 

appropriate factor of safety should be employed. 

As an example of the use of the equations, assume the following: 

b = 1 ft (Assume 12-in. 0.0. steel pipe by 0.75 in. wall, 

I= 421 in. 4
), e = 2 ft, L = 8 ft, and c = lkip/sq ft. 

Equations 7.2 through 7.5 are solved simultaneously and the following 

quadratic equation is obtained. 

P2 + 243P - 3422 = 0 

Pult = 13.4 kips 
Substituting into Eq. 7.3 yields the maximum moment. 

M = 13.4(2 + 1.5 + 0.744) = 57.0 ft-k max 
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Assuming no axial load, the maximum stress is 

fb = (57.0)(12)(6)/421 = 9.7 kips/sq in. 

The computed maximum stress is tolerable for a steel pipe, especially when 

a factor of safety is applied to Pult' The computations, then, show that 

the short pile would fail due to a soil failure. 

Broms presented a convenient set of curves for solving the problem of 

the short-pile (see Fig. 7.3). Entering the curves with L/b of 8 and e/b 

of 2, one obtains a value of Pult of 13.5 kips, which agrees with the 

results computed above. 

Cl) 
(J 

40 C: 
0 -u, ·-en 
cu 

30 0::: 

0 r-
cu 

2 -0 
....J 

Cl) e - 10 0 e b 'L - ee-Headed ::::, 
0 

0 4 8 12 16 20 

Embedment Length, L/b 

Fig. 7.3. Design curves for short piles under 
lateral load in cohesive soil 
( after Broms ). 

Long, Free-Head Piles in Cohesive Soil. As the pile in cohesive soil 

with the unrestrained head becomes longer, failure will occur with the 

formation of a plastic hinge at a depth of 1.50b + f. Equation 7.3 can 
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then be used directly to solve for the ultimate lateral load that can be 

applied. The shape of the pile under load wi 11 be different than that 

shown in Fig. 7.2 but the equations of mechanics for the upper portion of 

the pile remain unchanged. 

A plastic hinge will develop when the yield stress of the steel is 

attained over the entire cross-section. For the pile that is used in the 

example, the yield moment is 317 ft-kif the yield strength of the steel 

is selected as 40,000 lb/sq in. 

Substituting into Eq. 7.3 

P ult 
317 = Pult(2 + 1.5 + ~) 

Pult = 50.3 kips. 
Broms presented a set of curves for solving the problem of the long 

pile (see Fig. 7.4). Entering the curves with a value of M /cb 3 of 317, y 
one obtains a value of Pult of about 50 kips. 

~ 
~ 6 -a.:i 

- 4 
cu u 
C 
0 
1n 20 
en 
cu 

a:= 
-0 .. 
cu -0 

..J 

cu -0 
e -::::, 

Fig. 7.4. 

Restrained* 

Free-Headed 

J: 
D 

10 20 40 60 100 200 400 600 
Yield Moment, My /cb3 

Design curves for lonq piles under lateral 
load in cohesive soil (after Broms). 

*Note: The length of the pile for which these curves are val id must be 
ascertained (see text). 
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Influence of Pile Length, Free-Head Piles in Cohesive Soil. Consid

eration may need to be given to the pile length at which the pile ceases to 

be a short pile. The value of the yield moment may be computed from the 

pile geometry and material properties and used with Eqs. 7.2 through 7.5 

to solve for a critical length. Longer piles will fail by yielding. Or a 

particular solution may start with use of the short-pile equations; if the 

resulting moment is larger than the yield moment, the long-pile equations 

must be used. 

For the example problem, the length at which the short-pile equations 

cease to be valid may be found by substituting a value of Pult of 50.3 kips 

into Eq. 7.2 and solving for f and substituting a value of Mmax of 317 ft-k 

into Eq. 7.4 and solving for g. Equation 7.5 can then be solved for L. 

The value of L was found to be 19.0 ft. Thus, for the example problem the 

value of Pult increases from zero to 50.3 kips as the lengt~ of the pile 

increases from 1.5 ft to 19.0 ft, and above a length of 19.0 ft the value 

of Pult remains constant at 50.3 kips. 
Short, Fixed-Head Piles in Cohesive Soil. For a pile that is fixed 

against rotation at its top, the mode of failure depends on the length of 

the pile. For a short pile, failure consists of a horizontal movement of 

the pile through the soil with the full soil resistance developing over 

the length of the pile except for the top one and one-half pile diameters, 

where it is expressly eliminated. A simple equation can be written for 

this mode of failure, based on force equilibrium. 

Pult = 9cb(L - 1.5b) (7.6) 
Intermediate Length, Fixed-Head Piles in Cohesive Soil. As the pile 

becomes longer, an intermediate length is reached such that a plastic 

hinge develops at the top of the pile. Rotation at the top of the pile 

will occur and a point of zero deflection will exist somewhere along the 

length of the pile. Figure 7.5 presents the diagrams of mechanics for the 

case of the restrained pile of intermediate length. 

The equation for moment equilibrium for the point where the shear is 

zero (where the positive moment is maximum) is: 

Mpos = P(l.5b + f) - f(9cb)(f/2) - M . max y 
Substituting a value for f, 

MP05 = P(l.5b + 0.5f) - M . max y (7.7) 
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Fig. 7.5. Deflection, load, shear, and moment diagrams for 
an intermediate-length pile in cohesive soil that 
is fixed against rotation at its top. 

Employing the shear diagram for the lower portion of the pile, 
Pas 

M = 2.25cbg 2
• (7.8) max 

The other equations that are needed to solve for Pult are: 
L = 1. 5b + f + g ( 7. 9) 

and 
f = P/9 cb. (7 .10) 

Equations 7.7 through 7.10 can be solved for the behavior of the 

restrained pile of intermediate length. 

Long, Fixed-Head Piles in Cohesive Soil. The mechanics for a long 

pile that is restrained at its top is similar to that shown in Fig. 7.5 

except that a plastic hinge develops at the point of the maximum positive 

moment. Thus, the Mpos in Eq. 7.7 becomes M and the following equation max y 
results: 

2M 
p = __ ........_ __ • 

(1.5b + 0.5f) 
(7 .11) 

Equations 7.10 and 7.11 can be solved to obtain Pult for the long pile. 

Influence of Pile Length, Fixed-Head Piles in Cohesive Soil. The 

example problem will be solved for the pile lengths where the pile goes 
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from one mode of behavior to another. Starting with the short pile, an 

equation can be written for moment equilibrium for the case where the 

yield moment has developed at the top of the pile and where the moment at 

its bottom is zero. Referring to Fig. 7.5, but with the soil resistance 

only on the right-hand side of the pile, taking moments about the bottom 

of the pile yields the following equation. 

PL - 9 cb(L - 1.5b)(L - l.Sb)/2 - My= O 
Summing forces in the horizontal direction yield the next equation. 

P - 9 cb(L - 1.5b) = 0 (same as Eq. 7.6) 

The simultaneous solution of the two equations yields the desired 

expression. 

Pult = My/(0.5L + 0.75b) 
Equations 7.6 and 7.12 can be solved simultaneously for Pult-and 

follows: 

from Eq. 7.6, Pult = 9(L - 1.5) 

from Eq. 7.12, Pult = 317/(0.5L + 0.75) 

then L = 8.53 ft and Pult = 63.2 k. 

(7.12) 

for L, as 

For the determination of the length where the behavior changes from 

that of the pile of intermediate length to that of a long pile, Eqs. 7.7 

through 7.10 can be used with M set equal to MY, as follows: max 

from Eq. 7 .7, P lt = (
2)( 3l7) 

u 1.5 + 0.5f 

from Eq. 7 .8, g = ( /1;5)
0

•
5 = 11.87 ft 

from Eq. 7.9, L = 1.5 + f + g 

from Eq. 7.10, f = Pult/9 

then L = 23.83 ft and Pult = 94.2 k. 

In summary, for the example problem the value of Pult increases from 

zero to 63.2 kips as the length of the pile increases from 1.5 ft to 8.5 

ft, increases from 63.2 kips to 94.2 kips as the length increases from 8.5 

ft to 23.8 ft, and above a length of 23.8 ft the value of Pult remains con

stant at 94.2 kips. 

In his presentation, Broms showed a curve in Fig. 7.3 for the short 

pile that was restrained against rotation at its top. That curve-is omit

ted here because the computation can be made so readily with Eq. 7.6. 

Broms' curve for the long pile that is fixed against rotation at its top 

is retained in Fig. 7.4 but a note is added to insure proper use of the 
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curve. For the example problem, a value of 93 kips was obtained for Pult' 

which agrees well with the computed value. No curves are presented for 

the pile of intermediate length. 

Deflection of Piles in Cohesive Soil. 

Broms suggested that for cohesive soils the assumption of a coeffi

cient of subgrade reaction that is constant with depth can be used with 

good results for predicting the lateral deflection at the groundline. He 

further suggests that the coefficient of subgrade reaction u should be 

taken as the average over a depth of 0.8~L, where 

a 0.25 
B = (4EI) (4.4)* 

where a = soil modulus (subgrade reaction) 

EI= pile stiffness. 

Broms presented equations and curves for computing the deflection at the 

groundline. His presentation follows the procedure presented in Chapter 4 

and the methods in that chapter are recommended here for computing 

deflection. 

With regard to values of the coefficient of subgrade reaction, Broms 

used work of himself and Vesic (1961a, 1961b) for selection of values, 

depending on the unconfined compressive strength of the soil. The writer 

believes that the values suggested by Terzaghi (1955) yield results that 

are compatible with other assumptions; thus, values shown in Table 3.1 
are recommended. 

Broms suggested that the use of a constant for the coefficient of 

subgrade reaction is valid only for a load of one-half to one-third of the 

ultimate lateral capacity of a pile. 

For the example problem, the long pile in cohesive soil that is 

restrained against rotation at its top will be considered. A value of 

Pult of 94.2 kips was computed. A working load of 35 kips is selected for 

an example computation and, using Table 3.1, a value of a is selected as 

50 lb/sq in. The value of~ is 

( ) 

o. 2 5 
B _ 50 

(4)(30 X 106)(421) 
1 . 

= -- in. 

178 

*Broms' notation has been changed to agree with that in Chapter 4. 
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The value of ~L must be equal to or greater than 4 for the pile to act as a 

long pile; therefore, the length must be at least 60 feet. The deflection 

at the top of the pile may be computed from Eq. 4.35, using a value from 

Table4.l. 

PtB (35,000)(1.0) 
Yt =-:;-Alt= (178)(50) = 3.9 in. (4.35) 

Had the pile been shorter than 60 ft, values of the deflection coefficient 

can be obtained from other tables in Chapter 4. 

The further use of Broms' recommendation to compute the groundl i ne 

deflection of piles in cohesive soils will be demonstrated in Chapter 8 

where case studies are presented. 

Effects of Nature of Loading on Piles in Cohesive Soil. 

The values of soil modulus presented by Terzaghi are apparently for 

short-term loading. Terzaghi did not discuss dynamic loading or the 

effects of repeated loading. Also, because Terzaghi's coefficients were 

for overconsolidated clays only, the effects of sustained loading would 

probably be minimal. Because the nature of the loading is so important in 

regard to pile response, some of Broms' remarks are presented here. 

Broms suggested that the increase in the deflection of a pile under 

lateral loading due to consolidation can be assumed to be the same as 

would take place with time for spread footings and rafts founded on the 

ground surface or at some distance below the ground surface. Broms sug

gested that test data for footings on stiff clay indicate that the coeffi

cient of subgrade reaction to be used for long-time lateral deflections 

should be taken as 1/2 to 1/4 of the initial coefficient of subgrade 

reaction. The value of the coefficient of subgrade reaction for normally 

consolidated clay should be 1/4 to 1/6 of the initial value. 

Broms suggested that repetitive loads cause a gradual decrease in the 

shear strength of the soil located in the immediate vicinity of a pile. 

He stated that unpublished data indicate that repetitive loading can 

decrease the ultimate lateral resistance of the soil to about one-half its 

initial value. 

Ultimate Lateral Load for Piles in Cohesionless Soil. 

As for the case of cohesive soil, two failure modes were considered; 

a soil failure and a failure of the pile by the formation of a plastic 

hinge. With regard to a soil failure in cohesionless soil, Broms assumed 

that the ultimate lateral resistance is equal to three times the Rankine 
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passive pressure. Thus, at a depth Z below the ground surface the soil 

resistance per unit of length Pz can be obtained from the following 

equations. 

P z = 3blZKP 

KP= tan 2 (45 + !> 
l = unit weight of soil 

KP= Rankine coefficient of passive pressure 

~=angle of internal friction of soil 

(7.13) 

(7 .14) 

Short, Free-Head Piles in Cohesionless Soil. For short piles that 

are unrestrained against rotation, a soil failure will occur. The curve 

showing soil reaction as a function of depth is shaped approximately as 

shown in Fig. 7.6. The use of Ma as an applied moment at the top of the 

pile follows the procedure adopted by Broms. If both P and Ma are acting, 

the result would be merely to increase the magnitude of e. It is unlikely 

in practice that Ma alone would be applied. 

The patterns that were selected for behavior are shown in Fig. 7.7. 

Failure takes place when the pile rotates such that the ultimate soil 

resistance develops from the ground surface to the center of rotation. 

The high values of soil resistance that develop at the toe of the pile are 

replaced by a concentrated load as shown in Fig. 7.7. 

The following equation results after taking moments about the bottom 

of the pile. 

Solving for P when Ma is equal to zero, 
ybL 3K 

P = 2(e + ~) • 

(7.15) 

(7.16) 

And solving for Ma when Pis equal to zero, 
M = O.Slbl 3 K (7.17) 

a P • 
Equations 7.15 through 7.17 can be solved for the load or moment, or a 

combination of the two, that will cause a soil failure. The maximum 

moment will then be found, at the depth f below the ground surface, and 

compared with the moment capacity of the pile. An appropriate factor of 

safety should be used. The distance f can be computed by solving for the 

point where the shear is equal to zero. 

(7.18) 
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Fig. 7.6. Failure mode of a short pile in cohesionless soil 
that is unrestrained against rotation. 
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Fig. 7.7. Deflection, load, shear, and moment diagrams for 
a short pile in cohesionless soil that is 
unrestrained against rotation. 
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Solving Eq. 7.18 for an expression for f 

f = 0.816(P/lbK )0·5 • p (7 .19) 

The maximum positive bending moment can then be computed by referring to 

Fig. 7. 7. 
K ybf 3 

Mpos = P(e + f) - P + M 
max 2 a 

Or, by substituting expression for Eq. 7.18 into the above equation, the 

following expression is obtained for maximum moment. 
Mpos = P(e + f) - Pf/3 + M (7 .20) max a 

As an example of the use of the equations, the pile used previously 

is considered. The angle of internal friction of the sand is assumed to 

be 34 degrees and the unit weight is assumed to be 55 pounds per cubic foot 

(the water table is assumed to be above the ground surface). Assume Ma is 

equal to zero. Equations 7.14 and 7.16 yield the following: 

K = tan 2
( 45 + 34 ) = 3 54 p 2 . 

P = (0.055)(1)(8) 3 (3.54) 4 98 k. 
ult 2(2 + 8) = • ips. 

The distance f can be computed by solving Eq. 7.19. 

f - ( 4 • 98 ) o.
5 

- 4 13 ft 
- (1.5)(0.055)(1)(3.54) - • 

The maximum positive bending moment can be found using Eq. 7.20. 

Mmax = (4.98)(2 + 4.13) - (4.98)(4.13)/3 + 0 = 23.7 ft-k 

Assuming no axial load, the maximum bending stress fb is 

fb = (23.7)(12)(6)/421 = 4.05kip/sq in. 

The computed maximum stress is undoubtedly tolerable, especially when a 

factor of safety is used to reduc~ · P ult. Broms presented curves fo.r the 

solution of the case where a short, unrestrained pile undergoes a soil 

failure; however, Eqs. 7.15 and 7.18 are so elementary that such curves 

are unnecessary. 

Long, Free-Head Piles in Cohesionless Soil. As the pile in cohesion

less soil with the unrestrained head becomes longer, failure will occur 

with the formation of a plastic hinge in the pile at the depth f below the 

ground surface. It is assumed that the ultimate soil resistance develops 

from the ground surface to the point of the plastic hinge. Also, the 

shear is zero at the point of maximum moment. The value of f can be 

152 



obtained from Eq. 7.19 as shown above. The maximum positive moment can 

then be computed and Eq. 7.20 is obtained as before. Assuming that M is a 
equal to zero, an expression can be developed for Pult as follows: 

M 
P ult = 

e + 0.544[Pult/{ybKP)] 0 -5 
(7. 21) 

For the example problem, Eq. 7.21 can be solved, as follows: 

P = ·
317 

= 34.36 kips. 
ult 2 + 0.544[Pult/{{0.055)(1)(3.54)}] 0 · 5 

Broms presented a set of curves for solving the problem of the long 

pile in cohesionless soils (see Fig. 7.8). Entering the curves with a 

value of M /b 4 IK of 1628, one obtains a value of P lt of about 35 kips. y p u 
The logarithmic scales are somewhat difficult to read and it may be desira-

ble to make a solution using Eq. 7.21. Equations 7.19 and 7.20 must be 

used in any case if a moment is applied at the top of the pile. 

Q. 
~ 

>-.. 
,,,..0 1000....------------------.-----,-, 

.:::: a..::, 

oi 
u 
C 
0 -V, 

V, 
Q) 

er 

0 
~ 
Q) -0 

....J 

(1) 
+-
0 
E -

100 

10 ft 
--H

b 

1.0 10.0 100.0 1000.0 10000.0 

Yield Moment My/ b4 Y Kp 

Fig. 7.8. Design curves for long piles under lateral 
load in cohesionless soil (after Broms). 

*Note: The length of pile for which this curve is valid must be ascer
tained (see text). 
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Influence of Pile Length, Free-Head Piles in Cohesionless Soil. 

There may be a need to solve for the pile length where there is a change in 

behavior from the short-pile case to the long-pile case. As for the case 

of the pile in cohesive soils, the yield moment may be used with Eqs. 7.15 

through 7.17 to solve for the critical length of the pile. Alternatively, 

the short-pile equations would then be compared with the yield moment. If 

the yield moment is less, the long-pile equations must be used. 

For the example problem, the value of Pult of 34.36 kips is substi

tuted into Eq. 7.16 and a value of L of 19.7 ft is computed. Thus, for the 

pile that is unrestrained against rotation the value of Pult increases 

from zero when Lis zero to a value of 34.36 kips when Lis 19.7 ft. For 

larger values of L, the value of Pult remains constant at 34.36 kips. 

Short, Fixed-Head Piles in Cohesionless Soil. For a pile that is 

fixed against rotation at its top, as for cohesive soils, the mode of fai

lure for a pile in cohesionless soil depends on the length of the pile. 

For a short pile, the mode of failure will be a horizontal movement of the 

pile through the soil, with the ultimate soil resistance developing over 

the full length of the pile. The equation for static equilibrium in the 

horizontal direction leads to a simple expression. 

pult = 1.5rL2bKP (7. 22) 

Intermediate Length, Fixed-Head Piles in Cohesionless Soil. As the 

pile becomes longer, an intermediate length is reached such that a plastic 

hinge develops at the top of the pile. Rotation at the top of the pile 

wil1 occur, and a point of zero deflection will exist somewhere along the 

length of the pile. The assumed soil resistance will be the same as shown 

in Fig. 7.7. Taking moments about the toe of the pile leads to the follow

ing equation for the ultimate load. 

P lt = M /L + 0.5rbL2K u y p 
(7.23) 

Equation 7.23 can be solved to obtain Pult for the pile of intermediate 

length. 

Long, Fixed-Head Piles in Cohesionless Soil. As the length of the 

pile increases more, the mode of behavior will be that of a long pile. A 

plastic hinge will form at the top of the pile where there is a negative 

bending moment and at some depth f where there is a positive bending 

moment. The shear at depth f is zero and the ultimate soil resistance is 

as shown in Fig. 7.7. The value off may be determined from Eq. 7.19 but 

that equation is re-numbered and presented here for convenience. 

154 



f = 0.816(P/tbK )o.s 
p 

(7.24) 

Taking moments at point f leads to the following equation for the ultimate 

lateral load on a long pile that is fixed against rotation at its top. 

M+ + M-
p =----~Y ___ Y ___ _ 
ult e + 0.544[Pult/ybKP)]O.s 

(7.25) 

Equations 7.24 and 7.25 can be solved to obtain Pult for the long pile. 

Influence of Pile Length, Fixed-Head Piles in Cohesionless Soil. The 

example problem will be solved for·the pile lengths where the pile goes 

from one mode of behavior to another. An equation can be written for the 

case where the yield moment has developed at the top of the short pile. 

The ~quation is: 

P lt = M /L + 0.5tbl2 K • (7 .26) 
u y p 

Equations 7.23 and 7.26 are, of course, identical but the repetition is 

for clarity. Equations 7.22 and 7.26 can be solved for Pult and for L, as 

follows: 

from Eq. 7.22, Pult = 0.292L 2 

from Eq. 7.26, Pult = 317/L + 0.09735L2 

then L = 11.77 ft and Pult = 40.4 kips. 
For the determination of the length where the behavior changes from 

that of a pile of intermediate length to that of a long pile, the value of 

Pult from Eq. 7.23 may be set equal to that in Eq. 7.25. It is assumed 

that the pile has the same yield moment over its entire length in this 

example. 
from Eq. 7.23, Pult = 0.09735L 2 + 

3t7 

from Eq. 7 .25, Pult = 317 
)O 5 2 + 0.544(Pult/0~1947 · 

then L = 20.5 ft and Pult = 56.4 kjps 

In summary, for the example problem the value of Pult increases from 

zero to 40.4 kips as the length of the pile increases from zero to 11.77 

ft, increases from 40.4 kips to 56.4 kips as the length increases from 

11.77 ft to 20.5 ft, and above 20.5 ft the value of Pult remains constant 

at 56.4 kips. 

In his presentation, Broms showed curves for short piles that were 

unrestrained against rotation at their top. Those curves are omitted 

because the equations for those cases are so easy to solve. Broms' curve 

for the long pile that is fixed against rotation at its top is retained in 
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Fig. 7.8 but a note is added to 

example problem, a value of 68 

poorly with the computed value. 

ensure proper use of the curve. For the 

kips was obtained for Pult' which agrees 

The difficulty probably lies in the ina-

bility to read the logarithmic scales accurately. No curves are presented 

for the pile of intermediate length with fixed head. 

Deflection of Piles in Cohesionless Soil. 

Broms noted that Terzaghi ( 1955) has shown that the' coefficient of 

lateral subgrade reaction for a cohesionless soil can be assumed to 

increase approximately linearly with depth (see discussion of Terzaghi's 

recommendations in Chapter 3). As noted earlier, and using the formu

lations of this work, Terzaghi recommends the following equation for the 

soil modulus. 

E = kx s 
(7. 27) 

Table 3.2 presents Terzaghi's recommendations for values of k. Broms sug-

gested that Terzaghi's values can be used only for computing deflections 

up to the working load and that the measured deflections are usually larg-

er than the computed ones except for piles that are placed with the aid of 

jetting. 

Broms presented equations and curves for use in computing the lateral 

deflection of a pile; however, the methods presented in Chapter 6 are con

sidered to be appropriate. 

As an example problem, the long pile in cohesionless soil that is 

restrained against rotation at its top is considered. The value of Pult 

was computed to be 56.4 kips and a working load of 20 kips is selected. 

Using Table 3.2, a value of k of 10 lb/cu in. is selected. The groundline 

deflection may be computed from the following equations. 
PtT3 

yF=FYEI 

T = (EI/k) 0
•

2 

(6.81) 

(6.75) 
Obtaining a value of Fyt from Fig. 6.9 of 0.93 and substituting into the 

above equations, Tis found to be equal to 66.1 in. and the deflection at 

the groundline is found to be 0.43 in. For the solution to be valid, the 

length of the pile should be at least ST or 27.5 ft. Had the pile been 

shorter, other values of Fyt could have been obtained from Fig. 6.9. 

The further use of Broms' recommendations to compute the groundline 

deflection of piles in cohesionless soils will be demonstrated in Chapter 

8 where case studies are presented. 
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Effects of Nature of Loading on Piles in Cohesionless Soil. 

Broms noted that piles installed in cohesionless soil will experi

ence the majority of the lateral deflection under the initial application 

of the load. There will be only a small amount of creep under sustained 

1 oads. 

Repetitive loading and vibration, on the other hand, can cause sig

nificant additional deflection, especially if the relative density of the 

cohesionless soil is low. Broms noted that work of Prakash (1962) shows 

that the lateral deflection of a pile group in sand increased to twice the 

initial deflection after 40 cycles of load. The increase in deflection 

corresponds to a decrease in the soil modulus to one-third its initial 

value. 

For piles subjected to repeated loading, Broms recommended for cohe

sionless soils of low relative density that the soil modulus be decreased 

to one-fourth its initial value and that the value of the soil modulus be 

decreased to one-half its initial value for soils of high relative densi

ty. He suggested that these recommendations be used with caution because 

of the scarcity of experimental data. 

7 .2 POULOS METHOD 

Several authors have proposed methods for the analysis of laterally 

loaded piles where the equations of elasticity have been used to develop 

interaction equations. Poulos and his co-workers at the University of 

Sydney have been especially active (Poulos, 1971a; Poulos, 1971b; Poulos, 

1973; Poulos and Davis, 1980, Poulos, 1982) and the presentation herein is 

based principally on his work (1971a). 

Model Employed in Elastic Analysis. 

Poulos (1971a) assumed the pile to be a thin, rectangular, vertical 

strip of width b, length L, and constant stiffness EI. The possible hori

zontal shear stresses developed between the soil and the sides of the pile 

were not taken into account. The pile was divided into n+l elements, as 

shown in Fig. 7.9, with all elements being of an equal length h, except 

those at the top and at the tip of the pile, which are of length h/2. Each 

element was acted upon by a uniform, horizontal stress q which was assumed 

to be constant across the width of the pile. 

The soil was assumed to be an ideal, homogeneous, isotropic, linear, 

elastic material of semi-infinite dimensions. The soil was assumed to 
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Fig. 7.9. Stresses acting on (a) pile; 
(b) soil adjacent to pile 
(after Poulos) 

have a Young's modulus of E panda Poisson's ratio of v . The soil prop-s s 
erties were assumed to be unaffected by the presence of the pile. As will 

be noted later, Poulos presented some discussion of cases where EsP was 

not constant with depth. 

Poulos used the Mindlin equation for horizontal displacement due to 

horizontal load within a semi-infinite mass to compute soil displacement. 

Beam theory was used to compute pile displacements. The soil and pile 

displacements are evaluated and equated at the element centers except that 

displacements are computed at the top and at the.tip of the pile. Poulos 

sub-divided the pile into 21 elements. 

Free-Head Piles, Elastic Behavio~ 

The behavior of a pile under lateral load was expressed by Poulos in 

terms of non-dimensional influence factors. For a free-head pile, one 

.with no rotational restraint at the groundline, the equation for horizon

tal displacement at the groundline_is1 Eq. 7.28. 

* (7.28) 

*Some of the notation employed by Poulos has been changed to agree with 
notation previously used herein; however, it was necessary to retain some 
of the Poulos notation even though there will be more than one symbol for 
the same parameter. The reader should consult the section on Notation for 
a list of symbols and their meanings. 
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where 

Yt 
pt 

EsP 
L 

= groundline deflection 

= shear at groundline 

= soil modulus (values suggested by Poulos are given later) 

= pile length 

= influence coefficient for computing pile-head deflection 
for applied shear at groundline 

I = influence coefficient for computing pile-head deflection yM 
for applied moment at groundline 

Figures 7.10 and 7.11 give values of IyP and IyM' respectively, as a func

tion of KR, L/b, and vs. Poulos defined KR as the pile flexibility factor 

and its value may be computed by use of Eq. 7.29. 

where 

where 

EI 
K =--
R E L4 

sP 
(7.29) 

EI= pile stiffness 

The equation for rotation of the pile head at the groundline is 

pt Mt 
St = IsP E L2 + IsM E L3 

sP sP 

(7.30) 

St = rotation at groundline 

IsP = influence coefficient for computing pile-head rotation 

for applied shear at groundline 

IsM = influence coefficient for computing pile-head rotation 

for applied moment at groundline 

Figures 7.11 and 7.12 give values of IsP and IsM' respectively. 

The maximum moment in a free-head pile subjected to a lateral load is 

shown in Fig. 7.13 as a function of KR, Pt, L, and Lib. Poulos suggested 

that the maximum moment typically occurs at a depth of between O.ll and 

0.4L below the groundline. The lower depths are associated with stiffer 

piles. 

Fixed-Head Piles, Elastic Behavio~ 

For a pile that is fixed against rotation at the groundline, such as 

a pile that is built into a rigid concrete mat, the deflection at the 

groundline may be computed by using the following equation. 

pt 
Yt = IyF--rT (7.31) 

sP 
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where 

Yt = groundline deflection 

I = influence coefficient for computing pile-head head yF 
deflection for a pile with fixed-head 

Figure 7.14 gives values of IyF· 

50----..-----------------

20 
Vs= 0.5 

L/b 
10 

IyF 

5 

2 

I.__ _ _.___......_ _ _._ _ _._ _ _,_ _ __._--"",_ 

106 105 164 103 162 161 
10 

KR 

Fig. 7.14. Influence factors IyF for fixed-head pile 
(after Poulos). 

The bending moment at the top of a fixed-head pile is given by Fig. 

7.15 as a function of KR, Pt' L, and L/b. 

Effect of Local Yield of Soil Along Pile. 

Poulos noted that elastic analysis showed that very high values of 

soil pressure q developed near the top of a pile. An approximate analysis 

was made by modifying the elastic analysis. Yielding of soil was assumed 

at each element until all elements had yielded. It was assumed that the 

horizontal displacements of the soil at the elements where elastic condi

tions prevail can be computed by elastic theory using the known pressures 

at elements where soil has yielded. 
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Fig. 7.15. Maximum negative bending moment for 
fixed-head pile (after Poulos). 

Furthermore, because of the complexity of the analysis, only six ele

ments were employed rather than the 21 elements used in the previous sol

utions. Poulos presented curves for the free-head case only, as shown in 

Fig. 7.16, that allow the groundline deflection to be computed in terms of 

parameters previously employed and in terms of the distribution of the 

yield pressure Py· Poulos noted that the free-head case is more severe 

than the fixed-head case because the deflection of the free-head pile at 

the groundline would be more than for the fixed-head pile for the same 

load; hence, the computations using elastic analysis would show the soil 

pressures to be greater for the free-head case. He further noted that the 

information shown in Fig. 7.16 should be employed with caution because of 

the assumptions that had to be made in developing the figure. 

Determination of Properties of Soil 

Poulos suggested that the best method for obtaining EsP is to carry 

out a field loading test and to compute EsP from measured groundline 

deflections. 
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Fig. 7.16. Influence of distribution of yield pressure 
on load-displacement relationship, free-head 
case (after Poulos). 

To provide a rough guide, values of EsP were back-figured from data 

collected by Broms (March 1964; May 1964). The guidelines that were given 

are shown below. For cohesive soils: 

EsP = 15c to 95c 
where 

c = undrained shear strength of clay. 

For all cases considered, the average value of soil modulus was 

EsP = 40c. 
For cohesionless soils the following table was presented. It was noted 

that the soil modulus for sand is not constant with depth so that the use 

of the values in the table below is questionable. 
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Soil Density Range of E P' 
lb/sq in~ 

Average E P' 
lb/sq in~ 

Loose 130-300 250 

Medium 300-600 500 

Dense 600-1,400 1,000 

Poulos stated that for a cohesive soil with a uni form c the value of 

the yield pressure Py theoretically increases from 2c at the groundline to 

a value of 11.41c at a depth of about three pile diameters below the 

groundl i ne. He adopted the Broms I recommendation of 9c for design pur

poses. With regard to cohesionless soil, Poulos suggested the use of a 

triangular distribution of yield pressure with the yield pressure being 

equal to three times the Rankine passive pressure, a suggestion made ori

ginally by Broms. 

Poulos noted in the discussion of the proposed method that the creep 

of the soil at higher load levels can cause a discrepancy between results 

from analysis and those from experiment. 

Poulos (1982) gave an extended discussion of the behavior of a single 

pile due to cycling the lateral load. He identified two effects: the 

structural 11 shakedown 11 of the pile-soil system in which permanent defor

mations accumulate with increasing load cycles with no changes in the 

pile-soil properties, and a decrease in strength and stiffness of the soil 

due to cyclic loading. His paper dealt mainly with the degradation of the 

soil due to cyclic loading. 

Poulos defined degradation parameters for soil modulus DE and for 

yield pressure DP as shown 

DE= EcP/EsP 

DP = qy/qys 
where 

by Eqs. 7.32 and 7.33, respectively. 

= soil modulus after cyclic loading 

soil modulus for static loading 

(7.32) 

(7.33) 

= limiting pile-soil interaction stress (yield pressure) 

after cyclic loading 

qys = yield pressure for static loading 

Poulos noted that a limited amount of data are available on degradation 

factors and he suggested the use of data summarized by Idriss, et al. 
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(1978). Poulos prepared Fig. 7.17 from the Idriss data, with Ee redefin

ing the cyclic strain and E redefining a representative value of cyclic er 
strain. The value of E can be varied to influence the cyclic degradacr 
tion. The parameter tis defined by Eq. 7.34. 

where 

N = number of cycles 

Cyl ic Strain Ratio, (EclEcr> 

Fig. 7.17. Degradation parameter t, 
(from Poulos). 

(7.34) 

The effect of the rate of loading on the degradation was also consid

ered. The degradation factors DE and DP were multiplied by the rate fac

tor DR that is defined in Eq. 7.35. 

where 

(7.35) 

Fp = rate coefficient (limited data suggest a range of from 

0.05 to 0.3) 

\r = reference loading rate (perhaps static loading) 

\ = loading rate 

The computation procedure is initiated by selecting values of soil 

modulus and yield pressure for each element and a distribution of dis

placement is computed. The cyclic displacements, number of cycles, and 

rate of loading are used to establish degradation factors that can be used 
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in the next cycle. The procedure is continued until convergence is 

achieved. Poulos indicated that a computer program, not presented in his 

paper, has been written to perform the analysis. 

The presentation outlined above is insufficient to allow for the com

putation of the behavior under cyclic loading of a given pile in a given 

soil profile; however, the discussion does serve to illustrate the nature 

of the problem. 

Example Computation. 

The pile and soil employed in the Broms method will be used in solv

ing an example problem. The clay with an undrained shear strength of 1.0 
kip/sq ft would have a value of EsP of approximately 40 kip/sq ft. The 

pile length is assumed to be 40 ft; thus, the value of KR can be compu-

ted as shown below. 

K = (30 X 106 )(421)(144) = 8.57 X 10-4 
R (4 x 104 )(480) 4 

From Fig. 7.13 

M~~~ = (0.06)(Ptl). 
Assuming that the maximum moment is 317 ft-k, the Pt at failure of the 

pile is 132 kips. If it is assumed that a safe load of 50 kips can be 

applied to the pile, the groundline deflection may be computed by use of 

Eq. 7.28. The value of IyP was obtained from Fig. 7.10. 

_l 
y t = 1yP 

EsPL 

(8.5)(50) 
= --------'---- = 0.27 ft= 3.2 in. 

( 40)( 40) 
The computed values seem large compared to values obtained from the method 

of Broms. The error probably is in assuming that the elastic method can 

be used to compute the bending moment in the pile at the failure condi

tion. 

An alternate procedure is to assume that the maximum deflection is 

limited to 1.0 in. Substituting this value into Eq. 7.28 yields a lateral 

load as shown below. 
_ YtEsPL (1.0/12)(40)(40) 

Pt - I = 8 5 = 15.7 kips 
yP • 

The bending moment corresponding to the load of 15.7 kips is found to be 

37.7 ft-k which yields a bending stress of 6.45 kip/sq in. 
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7 .3 PRESSUREMETER METHOD 

The use of results from pressuremeter tests to design piles under 

lateral loading has been given attention in technical literature (Gambin, 

1963; Baguelin and Jezequel, 1972; Baguelin, et al., 1978; Briaud, et al., 

1982). The method produces p-y curves that can be used with a computer 

program to obtain pile response. 

Introduction. 

The pressuremeter as a design tool was developed by Menard (1956) and 

there is a considerable body of literature on the device. No attempt is 

made herein to present the developments that have led to the physical 

devices that are in use and the means of performing tests with these 

devices or to present the various theories that have been proposed for 

interpreting the pressuremeter test. 

The self-boring pressuremeter ·has been developed (Baguelin and 

Jezequel, 1973) but the method outlined is based on the use of the stand

ard Menard device. The rules for the prediction of p-y curves are empir

ical to a large extent but a number of field experiments have been carried 

out for the purpose of checking the validity of the method (Baguelin, et 

al., 1978, p. 312). 

Pressuremeter Curve. 

A typical curve from the Menard pressuremeter is shown in Fig. 7.18. 

The large volume change for a small increase in pressure at the early part 

of the curve results from the drilling of an oversized hole prior to plac

ing the pressuremeter probe. The next portion of the curve reflects a 

linear relationship between pressure and volume changes. Then, the curve 

becomes nonlinear and a limiting pressure is indicated. The following 

definitions relate to the shape of the pressuremeter curve. 

v = volume at start of the straight-line portion of the curve 
0 

and equal to the initial volume of the cavity 

Pf= pressure at the point where there is no longer a 

straight-line relationship between pressure and volume 

v = initial volume of the measuring cell 
C 

P2, = limit pressure (to be determined at point where initial 

volume has doubled; thus, P2, is the the value of pressure 

at the point where the volume of fluid is equal to 2v
0 

+ 

v . Note that the volume of fluid in the ce 11 when the 
C 
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Fig. 7.18. Typical curve from Menard pressuremete~ 

soil has been pushed back to its original position is v + 
C 

v but the volume indicator would register only v . 
0 0 

Determining Pressuremeter Modulus 

The assumption is made that the soil is elastic between v
0 

and vf 

where the pressuremeter curve is a straight line. The following equation 

gives the relationship between the shear modulus and the slope of the 

straight-line portion of the pressuremeter curve (Baguelin, et al., 1978, 

p. 153). 

where 

GM= v ~ 
/:,.V 

GM= shear modulus from pressuremeter 

v = volume of cavity 

1:,.p/1).v = slope of curve between v 
O 

and v f 

(7.36) 

The volume of the cavity changes between v
0 

and vf and the volume vm at 

the midpoint is used. 
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In order to obtain the Young's modulus E from the shear modulus G, 

the expression from mechanics is employed. 

E 
G = 2(1 + \)) ( 7. 37) 

where 

v = Poisson's ratio 

The value of Poisson's ratio can vary widely for a soil but Menard chose a 

value of 0.33 (Baguelin, et al., 1978, p. 154). Employing this value of 

v, the following equation results. 

where 

E = 2.66V ~ 
M m tv 

EM= the Menard modulus of deformation 

vm = midpoint volume 

Development of p-y Curves 

(7.38) 

The shape of the curves giving the soil response for a pile under 

lateral loading is shown in Fig. 7.19. In the upper curve in Fig. 7.19, 

the values of pf and pk'. may be taken directly from the pressuremeter 

curve. The curve can be drawn, then, by computing a value of k using one 
m 

of the following two equations. 

1 b 

where 

4(2.65)a + 3a 
18 

b < 0.6 m 

8
0 

= a reference width, usually 60 cm (2 ft) 

(7.39) 

(7.40) 

kM = slope of initial portion of Menard's soil response curve 

(see Fig. 7.19) 

b = pile diameter 

EM= the Menard modulus of deformation 

a = rheological factor (see Table 7.1) 

As shown in Fig. 7.19, the ordinates for the curve where the depth Z 

is zero is one-half of those where the depth is equal to Zc. The depth Zc 

is defined as the critical depth and is suggested by Menard to be about 2 b 

for cohesive soils and about 4 b for granular soils. If there is a pile 
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Fig. 7.19. Soil response curves proposed by Menard. 

TABLE 7.1. VALUES OF RHEOLOGICAL FACTOR a 
(after Baguelin, et al., 1948). 

Soil Type Peat Clay Silt Sand 

Over-consolidated 1 2/3 1/2 

Normally 
Consolidated 1 2/3 1/2 1/3 

Weathered and/or 
Remolded 1/2 1/2 1/3 
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Sand and 
Gravel 

1/3 

1/4 

1/4 



cap, the critical depth is zero. Between the ground surface and the crit

ical depth, the soil modulus should be AzkM given by Eq. 7.41. 

1 + (Z/Z ) 
\z= 2 C (7.41) 

The Menard curves for a pile under lateral loading can be developed 

from a pressuremeter curve (Fig. 7.18) and by use of Eqs. 7.38 through 

7.41. The final step in the development of p-y curves as employed herein 

is to convert the Menard curve. As noted in the above development, the 

following conversions are necessary. 

(7.42) 

and 

E . = kMb 
Sl 

(7.43) 

With Eqs. 7.42 and 7.43, a family of p-y curves can be developed from the 

Menard curves. 

Example Computation 

As an example of the use of the Menard approach to the analysis of 

piles under lateral loading, a report by Baguelin and Jezequel (1971) is 

employed. A test was performed on a stiff pile at a test site at Plancoet. 

A profile of the pile and soil is shown in Fig. 7.20. The following soil 

properties, based on information in the report, were used in analyses. 

silt: total unit weight, 17.1 kN/cu m 

submerged unit weight, 7.26 kN/cu m 

t 50 , o. 020* 

a (see Table 7.1), 0.5 

undrained shear strength, 35 kN/sq m* 

sand: submerged unit weight, 7.35 kN/cu m 

a, 0.33 

undrained shear strength, 29 kN/sq m* 

*Note: the values of s5B and shear strength are not used, of course, in 
getting p-y curves from ressuremeter results but are needed for use in 
other methods. Shear strength for sand and for silt should more properly 
be given in terms of an angle of internal friction; however, values of 
undrained shear strength were given in the report and used in making com
putations using methods other than the pressuremeter. 
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Depth,m 

2 ·' 
Silt .:, 

5 .-· 
Sand . : 

I 
I 

~ --➔--· 

I 
I 
I 
I 
I 

1.2m 

I = 0.003875 m 4 

EI= 772210 kN-m2 

fig. 7.20. Soil and test pile at Plancoit. 

The first three columns in Table 7.2 give results from the pressure~ 

metertests performed at Plancoet and the other columns in the table show 

the development of the p-y curves. The curves were employed to compute 

the behavior of the pile under lateral loading. The results of the compu

tations of deflection at the groundline are shown in Fig. 7.21, along with 

the measured values. Also shown in Fig. 7.21 are results from other meth

ods of analysis. The fact that the method of analysis employing COM624 

gave the best agreement between analysis and experiment could, of course, 

be fortuitous. 

Chapter 9 presents comparisons of results from analysis with results 

from a number of experiments. The comparison of the results from the 

pressuremeter are placed here because pressuremeter tests were not per

formed at any of the other sites where experiments are studied. 

7.4 METHOD USING CHARTS 

A method of design could be used in which preliminary designs or 

designs for small-scale projects could be made by reference to charts or 
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TABLE 7.2. POINTS ON p-y CURVES DERIVED FROM DATA FROM PRESSUREMETER 

Depth Pf P9., EM kM Az AzkM pl=pfb Y1 p2=p£.b Y2 
z 

bars bars bars bars bars kN/m m kN/m m m /cm /cm 
0.5 0.85 1.44 20 0.57 0.632 0.36 80.8 0.023 136.8 0.056 

1.0 0.95 1. 54 10.3 0.29 0.763 0.22 90.3 0.043 146.3 0.097 

1.5 1.05 2.07 13 0.37 0.895 0.33 99.8 0.032 196.7 0.094 

2.0 1.15 1.68 9.4 0.27 1.0 0.27 109.3 0.042 159.6 0.081 

3.0 1. 35 2.98 13. 7 0.39 1.0 0.39 128.3 0.035 283.7 0.119 

4.0 1. 55 3.23 18 0.51 1.0 0.51 147.3 0.030 306.9 0.096 

5.0 1. 75 3.48 26.5 0. 75 1. 0 0.75 166.3 0.023 330.6 0.069 

100 

........ 
z 
~ 80 

"O 
0 
0 
_J 

60 
0 
L. 
O> 
+-
0 
_J 40 

Ground line Deflection (mm) 

Fig. 7.21. Comparison of results from various analytical methods 
with results from experiment at Plancoet. 
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diagrams. A design office could perform a number of analyses using a com

puter program with assumptions being made about pile size and materials, 

soil properties, boundary conditions, and nature of loading. The results 

would then be analyzed and diagrams made for convenient use. 

Examples of the kinds of charts that can be developed are shown in 

Figs. 7.22 and 7.23. As noted in the figures, the charts were produced 

for a reinforced-concrete pile with a diameter of 18 in. The soil has a 

constant shear strength with depth and is below the water surface. The 

loading is cyclic. The difference between the two charts is that Fig. 

7.22 is for a soil with an undrained shear strength of 1000 lb/sq ft and 

Fig. 7.23 is for a strength of 2000 lb/sq ft. It is of interest to note 

that the limiting condition in Fig. 7.22 is deflection. The maximum 

deflection has arbitrarily been set at 10 percent of the diameter of the 

shaft or 1.8 in. On the other hand, the limiting condition in Fig. 7.23 is 

bending moment with the ultimate moment on the pile being reached before 

the limiting deflection. 

Ultimate moment capacity of shaft = 950 in.- kips 
Reinforcement percentage, • I o/o 

:-.._ Flexural rigidity, EI • 3.5 x 109 lb- sq in. 
8 ' ....._ Shaft Length • 40 ft 

Soil unit weight, • 57. 5 lb/CU ft 
Undrained shear strength , c = I 00 o lb/sq ff 

'- '-. In Ital k = 500 lb/cu in. 

6 

2 

-150 

I 

0 
0 

0 150 

•50 = 0.006 

300 450 600 750 

Mr ( in.- kips) 

Fig. 7.22. Values of maximum bending moment in an 18-in. diameter 
concrete shaft in clay (after Reese and Allen). 
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u, 
Q. 

:i: -a:-

9 

6 

~300 

Shaft properties are the same as those in FIQ. 2.32 

Soil unit weight, = 62.5 lb/ft 
Undrained shear strength, • 2000 lb /ft 

"'~ Inital k • 600 lb/In . 
........ ~ • • 0.0045 

'~ ( p-y criteria ore for stiff 
cloy below water surface) 

-150 0 150 300 450 

MT, in.- kips 

Fig. 7.23. Values of maximum bending moment in an 
18-in. diameter concrete shaft in clay 
(after Reese and Allenl 

900 

If the moment and shear at the top of the pile (drilled shaft, 

drilled pier, caisson) are known, it is a simple matter to enter a curve 

and arrive at the maximum bending moment in the pile. The difficulty 

arises with the specifics: pile dimensions, shear strength and other soil 

properties, and nature of loading. An extremely large number of charts 

would be necessary if a chart is at hand for conditions that are approxi

mately equal to those at a site. 

An office could encounter designs that are similar enough in nature 

to each other that it would be justified to develop a series of charts. 

Even that approach might be questionable if the office has convenient 

access to a digital computer of appropriate power. 

Simplified methods of design can be more useful if based on results 

of field load tests on piles of a certain type. Two proposals of this sort 

will be presented. 
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Manoliu (1976) examined the results from 27 different sites of 160 

field tests of precast concrete piles that were installed by driving. The 

soils ranged from sands to gravels to soft clays. Results were plotted 

and empirical curves were fitted through the plotted points. There was 

considerable scatter but Manoliu suggested that the curves shown in Fig. 

7.24 can be used for preliminary design. For a given design, a groundline 

deflection yt can be selected and the value of k obtained from Fig. 7.24. 

Then the relative stiffness factor T can be computed from Eq. 6.75. The 

lateral load can then be computed depending on pile-head restraint, using 

methods presented in Sect. 6.4. Manoliu indicated that the piles being 

tested generally could be defined as II long" with a Zmax greater than 4. 

Bhushan, et al. (1981) reported results on full-scale tests of drilled 

shafts that were installed in sand. The results were analyzed and Fig. 

7. 25 was prepared. The figure can be used for pre l i mi nary designs of 

40 

35 

30 

gravels; gravelly sands 

E 25 clean sands; very stiff clays 0 

:::, medium sands; stiff clays 0 20 ...... 
z fine sands, silty sands 

- soft si It y and clayey soils .:,: 

15 

10 

5 

0 .__...___._ __ ...._ __ .___......_ __ _._ _ __, 

0 0.2 0.5 1.0 1.5 2.0 2.5 3.0 

Yt, cm 

Fig. 7.24. Empirical curves showing response of driven, 
precast concrete piles (Manoliu, 1976). 
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' 120 
.0 

-.lll:: 

160 

200 

240 
0 0.02 0.04 0.06 0.08 0.10 

Ytl b 

Fig. 7.25. Empirical curves showing response of 
drilled shafts (Bhushan, 1981) 

drilled shafts in sand in a manner similar to that suggested by Manoliu. 

The curves in Fig. 7.25 are for sands above the water table. For sands 

below the water table, Bhushan suggests that the values of k from Fig. 

7.25 be halved. Bhushan did not restrict his curves to long piles; if the 

drilled shafts are short, the appropriate values of the nondimensional 

deflection coefficients should be employed. 
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7 .6 EXERCISES 

7.1 Use the pile shown in the example for the Broms method and solve 

for the ultimate capacity of the pile as a function of depth using the 

soil profile. Use Broms 1 equations with an e of 3 ft. 

7.2 Use the data in problem 1 and a long pile and select a service 

load at one-third the ultimate capacity of the pile. Compute the ground

line deflection, using Broms and Poulos methods. 

7.3 Repeat problem 1 using the soil profile in Fig. 3.13. 

7.4 Repeat problem 1 using a sand with an angle of internal friction 

of 34° and a submerged unit weight of 62.4 lb/cu ft. 
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CHAPTER 8. STRUCTURAL DESIGN OF PILES AND DRILLED SHAFTS 

8.1 NATURE OF LOADING 

A pile or drilled shaft that supports a bridge, a bridge abutment, or 

a retaining wall will normally be subjected to an axial load, a lateral 

load, and a moment. An example is a bridge bent shown in Fig. 8.1. 

I 
~ Truck 

0 11 IL 0 
Wind I I I 
----

Current 
- - ---

Fig. 8.1. Bridge bent. 

The live loads from trucks and other vehicles as well as the dead load of 

the structure must be sustained by the deep foundations. In addition to 

the vertical loads from traffic there can be transverse loads due to wind 

and current. Also, the vehicles may apply longitudinal loads because of 

braking. In short, there can be a complicated system of forces applied to 

a deep foundation used in a bridge or used in other structures found in 

transportation facilities. Thus, a deep foundation at the groundline will 

be subjected to an axial load, a lateral load, and a moment. Because the 

pile response may be nonlinear, iterations between the piles and the 
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superstructure may be necessary in order to satisfy the conditions of 

equilibrium and continuity. That is, the loadings on a pile may have to 

be estimated and the pile-head movements computed. With loads and move

ments, the stiffness of the pile can be found; these stiffnesses can then 

be employed in the analysis of the superstructure and the process repeated 

until convergence is achieved. 

It is possible that the shear and moment that act on'a pile head do 

not lie in the same plane. However, the assumption is implicit herein 

that all forces on a pile head do lie in the same plane; or, if not, that 

the pile behavior can be found by superposition. 

8.2 FAILURE MODES 

The most common failure mode in a pile or drilled shaft is excessive 

stress. The computation of stress from an axial load is straightforward 

and the procedures described herein can be employed to obtain the maximum 

bending moment. The computation requires a knowledge of the bending 

stiffness of the pile and of the ultimate moment the pile can sustain. 

For steel piles, the stiffness and ultimate moment can be found in tables; 

for drilled shafts with steel reinforcement, the ultimate moment can be 

computed by Computer Program PMEIX (see Appendix 5). The stiffness, con

sidering a cracked section, may also be computed by PMEIX or may be based 

on the gross moment of inertia of the concrete section. 

Excessive deflection of a pile or drilled shaft may also constitute 

fan ure. The excessive deflection, which may be computed by procedures 

described herein, may be due to a soil failure where the bottom of the 

pile has moved laterally. Or excessive deflection may be a result of too 

much elastic deformation of the pile itself. 

A deep foundation may also fail by buckling. Buckling is unlikely, 

however, if there is a pile cap at or near the ground surface. Soil that is 

weak can usually provide sufficient lateral restraint that buckling is not 

a problem. 

The illustration in Fig. 8.1 shows that the deep foundation is con

tinuous to the pile cap. There is no specific discussion of buckling 

included herein; however, Computer Program COM622 described earlier can 

be used to analyze the pile-column. The design loads (service loads times 

the factor of safety) are applied at the top of the unsupported 

pile-column, then the axial load is increased incrementally until the lat-
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eral deflection becomes excessive, and at that axial load the pile is con

sidered to have buckled. The procedure is also applicable to a pile in 

weak soil with little or no unsupported length. 

8.3 CONCEPTS OF DESIGN 

Structural Steel 

Two design philosophies of steel are in current use. The working 

stress method has been in principal use and is still used by many design

ers. According to this philosophy, a structural member is designed such 

that stresses computed under the action of 11 working 11 or service loads do 

not exceed some predetermined values. These allowable stresses are given 

by the AISC specifications (American Institute of Steel Construction, 

1978) or by the AASHTO specifications (Standard Specifications for High

way Bridges, American Association of State Highway and Transportation 

Officials, 1977). 

The other design philosophy is generally referred to as limit states 

design and more recently as the load-and-resistance-factor design (LFRD). 

In this approach the service loads are factored and the strength at an 

ultimate limit state is checked to ensure that the factored loads can be 

achieved. 

Because working-stress design is still strong in its popularity and 

the principal method specified by both AISC and AASHTO, it is recommended 

for use in the analysis of members of structural steel. 

Reinforced Concrete 

In general, most present-day d~sign of reinforced concrete is being 

done using ultimate strength concepts. The design of a member is designed 

based on the ultimate strength of the member; the m~thod is similar to the 

LFRD method for structural steel. In the ultimate strength approach, as 

in the LFRD method for steel, the service loads are factored. The·com

puted ultimate strength of the member is reduced by a capacity-reduction 

factor. If the factored loads lead to a required capacity that is less 

than the computed value of reduced ultimate capacity of the section, the 

design is adequate. In general, the Building Code Requirements for Rein

forced Concrete of ACI (American Concrete Institute, 1977) or AASHTO 

(1977) are used in design. 
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Timber 

If a pile or drilled shaft is to be made with timber, a work

ing-stress method is recommended as outlined in the Timber Construction 

Manual of the American Institute of Timber Construction (1974). Similar 

to structural steel, the allowable stresses prescribed in a timber spec

ification would ensure an adequate factor of safety against failure. The 

stresses in the timber pile at service load levels would'be compared to 

the allowable levels to ensure an adequate design. 

8.4 DESIGN OF A STRUCTURAL STEEL MEMBER 

Computation of Design Loads 

For the working-stress method of structural steel design, the design 

loads are based on in-service conditions. The actual dead weight of the 

as-built structure, the calculated values of live load such as truck load

ing on a bridge, and the effects of other loading such as wind are used. 

Step-by-Step Procedure 

Frequently the design of a steel pile is contra 11 ed by the soil 

resistance to axial loading. The pile is then checked to see that the 

steel is not over-stressed. Sometimes, however, the design may be con

trolled by the stresses in the steel. In this latter case, the 

step-by-step procedure outlined below may be employed. 

1. Determine the working or in-service loads acting on the 

member. 

2. Select a member using previous experience or preliminary 

analysis. 

3. Determine the EI value (stiffness) of the structural steel 

section for use in the analysis of the member. 

4. Using the in-service loads and the EI of the pile, obtain 

the maximum shear and moment in the member. A computer pro

gram or another method may be used. 

5. For the calculated maximum moment and shear, determine the 

stresses in the section. 

6. Compare the actual stresses in the member to the allowable 

stresses. If the actual stresses are slightly less than the 

allowable stresses, the member is adequate. If the member 

is over-stressed or if it is grossly under-stressed, a new 

selection is made and the process is repeated. 
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The equations from the AISC specifications are listed here for con

venience. To check the combined stress state for strength: 

(8.1) 

where 

f = axial stress from service loads a 
fb = bending stress from service loads 

FY = yield stress of steel 

Fbx = allowable stress in bending 

(Fbx determined from AISC section 1.5.1.4). 

Equation 8.1 has been written to indicate bending about only one axis; it 

is assumed that there will be no biaxial bending. To check the shear 

stress: 

where 

F = 0.4 F 
V y (8.2) 

Fv = allowable shear stress. 

7. When a member of appropriate size is found, check for other 

failure modes such as buckling as outlined earlier. 

In the example computations presented in earlier chapters, it was 

shown that the bending stress in a pile is maximum at or near the ground 

surface and decreases rapidly with depth. If a pipe pile is employed, a 

pipe with a thicker wall may be selected for the top several feet and a 

section with a thinner wall used below. If a structural shape is to be 

employed, it may be possible to add plates in the top few feet to with

stand the bending stresses and achieve overall economy. 

Example Problem 

The data for an example problem are shown in Fig. 8.2. It is desired 

to determine if the steel pipe has adequate strength for the given condi

tions. Previous analyses are assumed to have shown that deflection does 

not control nor is buckling of concern. 

Because there is bending about one axis only, AISC Eq. 1.6-lb b·ecomes 

The computation of the stresses to substitute into Eq. 8.1 is as follows: 
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~ 
~!" 

Fy = 36kips/sq in. 

E = 29,000kips/sqin. 

I = 5,438 in 4 

b = 25 in. 

Px = 750Kips 

~Mt 
~ 

Moment Shear 

Vmax 

Mmax= 5000 in.-kips Vmax= 250 

Fig. 8.2. Example to demonstrate the analysis of a steel pipe. 

A= TT(r
0

2 - ri 2 ) = TT[(12.5) 2 - (11.5) 2 ] = 75.4 sq in. 

fa= 750/75.4 = 9.95 kips/sq in. 

f =Mc= (5000)(12.5) = ll 49 k' / . 
b I 5438 • ,ps sq in. 

(see AISC Section 1.5.1.4.1, paragraph 7) 

Fb = 0.66Fy if f < 
3
:

00 

y 
where d = depth of section and t = thickness of wall. 

£!. = ~~ = 25 
t 1 

3300 = 3300 = 92 
F 36 y 

25 < 92 therefore, Fb = 0. 66 FY 

Fbx = 0.66(36) = 23.8 kips/sq in. 

Substitution into Eq. 8.1 yields the following: 

~i~~ + 
1
}3.~9 

= 0.461 + 0.483 = 0.943 < 1.0. 

Therefore, the section is satisfactory for combined axial load and flex

ure. 
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To check shearing stresses, AISC Specification 1.5.1.2.1 is con

sulted. 

F = 0 .40 F 
V y 

The computation of the stresses to use in checking the adequacy of the 

section in resisting shear is as follows: 

Fv = 0.4 FY= (0.4)(36) = 14.4 kips/sq in. 

Av= area resisting shear 

~(0.5)(Agross) = 37.7 sq in. 

fa= Vmax/Av = 250/37.7 = 6.63 kips/sq in. 
6.63 < 14.4. 

Therefore, the section is satisfactory with regard to shearing stresses. 

8.5 DESIGN OF A REINFORCED CONCRETE MEMBER 

Computation of Design Loads 

Because design of reinforced concrete is currently done using ulti

mate strength concepts, the loads on a structure at failure are above ser

vice load levels and therefore factored loads are used. The load factors 

to be used depend on the type of load and the governing concrete code. The 

loads which need to be considered include dead load, live load, wind load, 

earthquake load, thermal load, creep and shrinkage effects, earth pres

sure; each has a specified load factor. The magnitude of the load factor 

for each type of load depends on which specification has been adopted. If 

the pile or drilled shaft is for a bridge structure, the governing code is 

probably AASHTO (1977). If the foundation is for a building, the ACI Spe

cification (1977) has probably been adopted by the local building authori

ties. Both AASHTO and ACI require the member selected to have adequate 

strength for different loading combinations. The design of the member is 

based on the greatest required strength. 

Computation of Bending Stiffness 

A value of bending stiffness EI must be determined in order to com

pute the behavior of a pile or drilled shaft under lateral loading. Con

crete has a 1 ow tensile strength and the assumption made is th.at the 

concrete cracks if there are tensile stresses. Thus, the EI of a rein

forced concrete section wi 11 depend on the magnitude of the bending 

moment. Some investigators have suggested that the effective bending 

stiffness lies between that of the gross concrete section and that of the 

fully cracked section. Because the magnitude of bending stiffness does 
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not have a large effect on deflection, moment, and shear that are computed 

in the analysis under lateral load, some investigators prefer to use the 

stiffness of the gross concrete section. However, in the example that 

follows the stiffness of the cracked section is used. 

Because the bending stiffness of a reinforced-concrete section 

depends on the axial load and bending moment, it follows that the EI var

ies along the length of a pile. If the magnitude of the EI were critical 

to the solution of the bending moment, a computer program for the computa

tion of bending stiffness could be incorporated as a subroutine into the 

computer program for the analysis of a laterally loaded pile. In such a 

case, another level of iteration would be required to compute the behavior 

of a reinforced-concrete pile. The use of a variable stiffness in the 

analysis of a laterally loaded pile appears undesirable at present in view 

of other uncertainties of greater importance. 

In any case, however, a computer program is needed in order to com

pute the ultimate moment that can be sustained by a reinforced concrete 

section. The program can also compute the bending stiffness. Computer 

Program PMEIX is described in Appendix 5. 

Program PMEIX produces data giving moment versus curvature for a giv

en level of axial load. The M-4> curve varies for different levels of 

axial load as is shown in the following figure. The value of the ultimate 

moment that can be sustained may be taken directly from such a figure as 

Fig. 8.3. 

The EI which may be used in analyses is the slope of the M-4> curve 

after the section has cracked for the known level of axial load. 

llM 
(EI)effective = fl¢ 

In using a program like PMEIX, which generates a curve for a given axial 

load like one of those shown in Fig. 8.3, the axial load should be the fac

tored axial load divided by the applicable capacity reduction factor, ¢. 

The reason is that the strength of the concrete section will be checked at 

its ultimate strength which is at the level of the factored loads. 

In lieu of a more accurate analysis such as that given by Program 

PMEIX, ACI equations (10-9) and (10-10) can be used to detemine an EI val

ue. However, these equations can be very conservative. 

Creep of concrete under sustained loads also has an effect on stiff

ness. As stiffness decreases, deflections increase producing sec-
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axial load 

Fig. 8.3. Relationship between moment and curvature 
for a concrete member. 

ond-order or P-de lta effects. To take this into account, AC! (Sec. 

10.11.5.2) recommends reducing the effective EI value by the term (1 + ~d) 

where ~dis the ratio of the maximum factored dead load moment to the max

imum factored total load moment. 

(El) _ (El)effective 
creep 1 + Bd 

~dis always positive and has a maximum value of 1. Because for the pile 

problem these moments are not known until an analysis is done, which in 

turn depends on the EI value used, taking a value of ~d = 1 would produce 

the smallest EI. 

Step-by-Step Procedure 

The following is a step-by-step procedure which can be used in the 

analysis and design of a reinforced concrete pile or drilled shaft. 

1. Determine the loads acting on the structure and then use the 

appropriate load factors. The following load factors for 

gravity loads and capacity-reduction factor for a spirally 

reinforced shaft are specified by the American Concrete In
stitute. 

Load factor for dead load is 1.4, 

Load factor for live load is 1.7, and 
Capacity-reduction factor~ is 0.75. 
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2. By previous experience or preliminary analysis select a 

member size and reinforcement. 

3. Take the factored axial load, divided by the appropriate 

capacity-reduction factor, and run Program PMEIX to deter

mine a stiffness (EI) value at the level of axial load to be 

used in the shaft analysis program. 

4. Run computer program C0M622 using the factored loads which 

have al so been divided by the appropriate capaci

ty-reduction factor. The shaft analysis program will yield 

the maximum shear and moment in the member. 

5. From the earlier run of PMEIX the ultimate moment capacity 

may be determined. Multiply this nominal ultimate moment 

by the appropriate capacity-reduction factor to get the 

allowable ultimate moment. 

6. Compare the allowable ultimate moment to the maximum moment 

computed in the analysis of the pile under lateral loading. 

If the allowable ultimate moment is equal to or slightly 

greater than the maximum moment from the analysis, the sec

tion is adequate. If the section is under-sized or grossly 

over-sized, a new section is selected and the analysis is 

repeated. Also, check the shear capacity of the section. 

In performing steps 5 and 61 the relevant equations from the code are 

to be employed. The equations from the AC! speci!ications are listed here 

for convenience. 

where 

where 

M = ¢M 
u N 

M = allowable ultimate· moment 
u 

¢ = capacity-reduction factor 

MN= nominal ultimate1moment. 

Vu= ¢(Ve+ Vs) 

V = shear capacity of a member u 
Ve = shear contribution of the concrete 

V = shear contri but i'on of the reinforcing s steel 

¢ = capacity-reduction factor for shear (0.85). 
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where 

Nu= factored axial load 

A = gross area of concrete 
g 

bw = diameter of circular section 

d = distance from extreme compression fiber to centroid 

of tensile reinforcement. 

7. The final step is to check for other failure modes such as 

buckling when a member of appropriate size is found. The 

procedure for checking for buckling was outlined earlier. 

As noted in the discussion of the structural steel member, the steel 

reinforcement in a reinforced concrete pi 1 e may be needed only in the 

upper portion of the pile. The designer may be able to achieve consider

able economy by matching the required reinforcement to the computed 

stresses. 

Example Problem 

The data for an example problem are shown in Fig. 8.4. It is desired 

to determine if the reinforced concrete section has adequate strength for 

the given conditions. Previous analyses are assumed to have shown that 

deflection does not control nor is buckling of concern. Load factors and 

capacity-reduction factor given earlier are used to compute loadings. 

Pux = 1.4(350) + 1.7(150) = 745 kips 

Mut = l.4(1xlO 6
) + l.7(O.5xlO 6

) = 2.25 x 10 6 in.-lb 

Put= l.4(25k) + l.7(10k) = 52 kips 

The bending stiffness EI is determined by using Computer Program PMEIX 

(see Appendix 5). The axial load to be used in PMEIX was found as follnws: 
Pux 745 

PN = - = - = 993 kips. 
X ¢ 0.75 

Using PMEIX at an axial load level of 993 kips, the moment-curvature (M-¢) 
relationship shown in Fig. 8.5 was determined. Figure 8.5 was analyzed 

and the following bending stiffness was obtained. 

(EI) = .6M ~ 0.67 x 10 7 in.-lb = 8 •4 x 1010 lb-sq in. 
effective .6¢ O.8O x 10- 4 rad/in. 

Taking into consideration creep yields: 

(EI)effective 8.4 x 1010 
EI = ------ = ---- = 4.2 x 1010 lb-sq in. 

1 + Sd 1 + 1 

The factored loads divided by the capacity-reduction factor resulted in 

the moment and shear shown in Fig. 8.6. 
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Given: 

As-total= 12.0(0.79sqin.)=9.48sqin. 

f~ = 4,000 lb/sq in. 

fy = 60,000lb/sqin. 

E5 = 29 x 106 lb/ sq in. 

Ee= 57,000~ = 3,605,000 lb/sq in. 

Cover = 3 11 to center of bar 

Spiral Column 
Assume Bd = I 

Service Loads Given: 

P, = ~DL + pxLL = 350 kips + 150 kips 

M1 = MrnL + M,LL = Ix 10
6
in.-lb 6 

+ 0.5 x 10 in.-lb 

Pi = PioL + P,LL = 25kips + IOkips 

Fig. 8.4. Example to demonstrate the analysis of a 
reinforced concrete pile. 
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"T. M-cp for P = 97 3 kips C 
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>< - ----0 

1.0 .... --- ____ ff ____ -----
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~ I -C t> Q) 

E 0.5 6M 0 I ' z 

,' 6 cp 
0.0------.....L...---__,_----~---

o.o 1.0 2.0 3.0 
Curvatur~, cp (Ix 10 • rad/ in.) 

Fig. 8.5. Relationship between moment and curvature 
for the example problem. 
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6 2·25 x IO = 3 x rc6 in.-lb 
0.75 

52 kips_ 69 k. 
0. 75 - ips 

Fig. 8.6. Values of load to be employed in computer program 
to analyze laterally loaded drilled shaft. 

The bending stiffness of 4.2 x 10 10 sq in.-lb was employed, along 

with the loading shown in Fig. 8.6, and Computer Program COM622 was 

employed. The details of the computer analysis are not shown here but the 

significant results are presented in Fig. 8.7. The allowable ultimate 

values are now compared to those from analysis. From the previous M-¢ 

curve, and using engineering judgement, the ultimate nominal moment 

capacity for the given level of axial load is 0.95 x 10 7 in.-lb. The rea

son the maximum value of about 1.1 x 10 7 in.-lb was not chosen is that at 

this value the EI value is much less, yet the shaft analysis program used 

an EI value in the initial range. The 0.95 x 10 7 in.-lb value represents 

•the point on the M-¢ curve where the EI value begins to be drastically 

reduced. The allowable ultimate moment Mu is equal to ¢MN. Thus, 

Mu= 0.75(0.95 x 10 7
) = 7.1 x 10 6 in.-lb. 

The maximum moment was found from computer analysis (Fig. 8.7) to be 6 x 

10 6 in.-lb; therefore M > M and the section is satisfactory for bend-u max 
ing. 

To check the shear, Eqs. 8.5 and 8.4 are used. 

V = 2 [1 + 745 ,ooo ] y4000 (30)(24) = 1.4 x 1os1b = 140 kips 
C (2000)(707) 

Vu= 0.85 Ve= 118 kips 
The maximum shear found from the computer analysis was 75 kips; therefore, 

the section is adequate for shear because V > V . There is no need to u max 
compute the contribution to shear of the steel reinforcement. 
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Mmax 

6 
Mmax= 6 X 10 in·lb Vmax= 75kips 

Fig. 8.7. Results from computer analysis of the drilled shaft. 

The computed maximum moment at ultimate is about 15% less than the· 

allowable maximum moment, and the capacity of the section in shear is more 

than adequat~. Therefore, the designer might consider a reduction in the 

size of the section, in the amount of reinforcing steel, or in the 

strength of the concrete. Any change in the section would have to consid

er a number of factors other than the strength of the section. 
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8. 7 EXERCISES 

8.1 Select a steel structural shape to replace the pipe pile in the 

example. Assume no change in the moment and shear obtained from the com

puter program. 

8.2 Reduce the amount of steel in the reinforced concrete section 

and re-work the example. Assume the moment and shear obtained from the 

computer program to be unchanged but re-run PMEIX to obtain the moment 

versus curvature relationship for the new section. 

195 





CHAPTER 9. CASE STUDIES OF SINGLE PILES UNDER 

LATERAL LOADING 

9.1 INTRODUCTION 

For single piles under lateral loading, a comparison of results from 

analyses with results from experiments is useful to provide an understand

ing concerning the quality of the analytical methods. The presumption is 

made that the experiments reveal the true behavior of a specific pile 

under lateral loading at a specific site. Emphasis in the analyses will 

be placed on the computer method described in detail herein; however, the 

Broms and Poulos methods presented in Chapter 7 will also be employed. 

Separate sections in this chapter are presented for piles in sand and 

for piles in clay. The response of the soil is so different in these two 

instances that separate comparisons are desirable. 

Several cases are selected for study. In order to perform the ana

lyses it is necessary that information be available on pile dimensions and 

properties of the pile material, on the engineering properties of the 

soil, on the magnitude of load and its method of application, and on the 

response of the pile to loading. There are a limited number of cases in 

the technical literature where the above information is available. 

Prior to presenting the comparisons between results from analyses 

ind results from experiments, it is of interest to present the results of 

some parametric studies. Only the computer method is employed in these 

parametric studies. 

The principal aim of the parametric studies is to investigate the 

influence on pile response of various parameters. Most of the parameters 

that were investigated involved soil properties, but some studies were 

aimed at investigating the influence of the bending stiffness EI of a 

pile. Studies were made of the four methods of predicting soil behavior 

for clay and of the single method of predicting the response of sand. The 

initial parameters selected for the soil are shown in Table 9.1 and for 

the pile are shown in Table 9.2. As shown in the following paragraphs, 

the effects of varying some of these parameters are investigated. 

The general procedure employed in these studies follows that used by 

Meyer (1979). The parameters varied for the clay criteria are: c, £ 50 , 

k, and EI; the parameters varied for the sand criteria are: ~. r, k, and 

EI. Cyclic loading was employed in all cases because that is the condi-

Preceding page blank 
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TABLE 9.1. INITIAL PARAMETERS FOR SOIL. 

Soil Soft Clay Stiff Clay Stiff Clay Unified Sand 
Properties below W. T. below W.T. above W.T. Criteria 

c(lb/sq in.) 6.0 60 15 6.0 

e:so 0.02 0.002 0.005 0.01 

~ 35° 

y{lb/cu ft) 45 45 110 45 45 to 75 

k(lb/cu in.) 500 200 100 60 

TABLE 9.2. INITIAL PARAMETERS FOR PILE. 

b (in.) 16 

EI (lb-sq in.) 3.13 x 1010 

L (ft) 75 

tion most often encountered in practice. The pile head was assumed to be 

free to rotate. 
The percentage change of the input parameters was computed as fol

lows: 

ti%= New value - initial value lOO. (_9.1) 
Initial value 

The change of percentage of the input parameters was based on the sensi

tivity of the results to the change. A change of ±50% was used in several 

instances. 
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A study was made also concerning the depth of embedment. As noted 

earlier, short piles fail because of soil failure and the depth of embed

ment is critical in such instances. Computations show that a small 

increase in the depth of embedment can cause a significant increase in the 

lateral capacity. 

9.2 PARAMETRIC STUDIES OF PILES IN CLAY USING COMPUTER 

METHOD 

Soft Clay below Water Table 

The results of analyses using the Matlock (1970) criteria are shown 

in Figs. 9.1 through 9.3. Figure 9.1 shows the effects on maximum bending 

moment and deflection of varying the undrained shear strength from 432 

lb/sq ft to 1296 lb/sq ft. As might have been expected, the maximum bend

ing moment and the deflection show almost a linear variation with the 

undrained shear strength. 

Figure 9.2 shows the effects on maximum bending moment and deflection 

of varying E 50 from 0.01 to 0.03. The changes in bending moment and 

deflection are relatively small. 

Figure 9. 3 shows the effects on maximum bending moment and on 

deflection of varying the EI of the 16-in.-diameter pile from 1.57 x 10 10 

lb-sq in. to 4.70 x 10 10 lb-sq in. The effect on the bending moment is 

negligible to small but the effect on the deflection is significant. A 

tripling of the EI results in about a 50% decrease in deflection. 

Stiff Clay below Water Table 

The results of analyses using the Reese, Cox, Koop (1975) criteria 

are shown in Figs. 9.4 through 9.7. Figure 9.4 shows the effects on maxi

mum bending moment of varying the undrained shear strength from 4,320 

lb/sq ft to 12,960 lb/sq ft. At first glance it is surprising that the 

bending moment and deflection were not affected more by the change in 

shear strength; however, the loads are relatively small. As the bending 

moment approaches its ultimate, more differences in the curves in Fig. 9.4 

would develop. 

Figure 9.5 shows the effects on pile response of changing E50 from 

0.001 to 0.003. The changes in bending moment and deflection are rela

tively small except at the loads of larger magnitude. 

Figure 9.6 shows the effects on pile response of changing the initial 

values of k (where the initial portion of a p-y curve is defined by Es= 
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Fig. 9.1. Comparison between results for ±50 percent variation in 
c for soft clay below water table. 
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Fig. 9.2. Comparison between results for ±50 percent variation in 
c: 50 for soft clay below water table. 
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Fig. 9.3. Comparison between results for ±50 percent variation 
in EI for soft clay below water table. 

kx). The value of k was changed from 250 lb/sq in. to 750 lb/sq in. As 

may be seen the lower value of k caused a significant increase in 

deflection and bending moment, especially at the higher loads. 

Figure 9.7 shows the effects on pile response of changing the pile 

stiffness EI from 1.57 x 10 10 lb-sq in. to 4.70 x 10 10 lb-sq in. The 

effects on both bending moment and deflection became significant at the 

higher loads. 

Stiff Clay above Water Table 

The results of analyses using the Reese and Welch (1975) criteria are 

shown in Figs. 9.8 through 9.10. One hundred cycles of loading were 

employed in the studies. Figure 9.8 shows the effects on maximum bending 

moment and groundline deflection of changing the undrained shear strength 

from 1080 lb/sq ft to 2160 lb/sq ft. At the larger loads there are signif

icant increases in both deflection and bending moment. 

Figure 9.9 shows the effects of changing e50 from 0.0025 to 0.0075. 

The effects are relatively small for the full range of loading. 

Figure 9.10 shows the effects of changing the bending stiffness of 

the pile EI from 1.57 x 10 10 lb-sq in. to 4.70 x 10 10 lb-sq in. The 

effects on the maximum bending were negligible but the effects on deflec

tion were considerable. 
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Fig. 9.10. Comparison between results for ±50 percent variation 
in EI for stiff clays above water table, 

Unified Criteria for Stiff Clay below Water Table 

The results of analyses using the Sullivan, Reese, Fenske (1980) 

method are shown in Figs. 9.11 through 9.14. Figure 9.11 shows the 

effects on bending moment of changing the undrained shear strength from 

432 lb/sq ft to 1296 lb/sq ft. The effects on both maximum bending moment 

and deflection are severe. 

Figure 9.12 shows the effects of changing E 50 from 0.005 to 0.015. 

The effects are negligible at the smaller loads but become significant as 

the load increases. 

slope 

lb/sq 

used. 

Figure 9.13 shows the effects of varying the value of k (the initial 

of the p-y curves is obtained from E = kx) from 100 lb/sq in. to 300 
s 

in. The effects are negligible for the range of loading that was 

Figure 9.14 shows the effects of changing the EI of the pile from 

1.57 x 10 10 lb-sq in. to 4.70 x 10 10 lb-sq in. The effects are signif

icant at the higher loads on both maximum bending moment and groundline 

deflection. 

Sand 

The results of analyses using the Reese, Cox, Koop (1974) method are 

shown in Figs. 9.15 through 9.18. Figure 9.15 shows the effects of chang-
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ing the angle of internal friction¢ from 28 to 42. As may be seen, the 

effects are significant for the full range of loading. 

Figure 9.16 shows the effects of changing the submerged unit weight 

l 1 from 48 lb/cu ft to 73 lb/cu ft (about the maximum range that could be 

expected in practice). The effects are relatively small for the full 

range of loading. 

Figure 9 .17 shows the effects of changing the value of k , that s 
establishes the initial slope of the p-y curves, from 30 lb/sq in. to 90 

lb/sq in. As may be seen, the effects are negligible on both the maximum 

bending moment and the groundline deflection. 

Figure 9.18 shows the effects of changing the bending stiffness EI of 

the pile from 1.57 x 10 10 lb-sq in. to 4.70 x 10 10 lb-sq in. The effects 

are negligible on the deflection and significant on the groundline 

deflection. 

Comments on Parametric Studies 

The curves shown in Figs. 9.1 through 9.18 provide some guidance on 

the influence of various parameters. While there is a considerable amount 

of guidance to be gained by a designer from a study of the curves, the 

curves are specific in that the pile diameter (16 in.), method of loading 

(cyclic), and pile head condition (free to rotate) remained unchanged 

throughout the study. The designer is encouraged to perform parametric 

studies of a similar sort for the particular problem that is encountered. 

Effect of Depth of Penetration 

A further study is of interest regarding the pile selected for the 

parametric studies. Figure 9.19 shows the results of studies where the 

penetration of the pile is gradually reduced. As may be seen, the ground

line deflection (and other aspects of pile response) is unaffected with 

increased penetration beyond a critical length. However, as the pene

tration becomes less than the critical length, the deflection undergoes a 

sharp increase, indicating a soil failure. For the free-head pile in 

sand, the critical depth is about 18 feet for a lateral load of 10 kips and 

perhaps 24 feet for a lateral load of 30 kips. 

In practice, the designer should usually make certain that the pene

tration is below the critical depth. An increase of a few feet of pile 

length in some instances can ensure a much more favorable response of a 

pile under lateral load. 
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Fig. 9.19. Effect of depth of embedment 
on lateral deflection in sand 

9.3 COMMENTS ON METHODS USED FOR CASE STUDIES 

The technical literature was consulted and a number of articles or 

reports were found where experimental results were given on lateral load 

tests. The literature search was not exhaustive; however, the analyses of 

the tests that are presented should be useful in giving additional under

standing of the methods of analysis. No attempt was made to select only 

those tests that appeared to correlate better with analysis; the criterion 

for selection was that sufficient information was available to allow a 

test to be analyzed. However, the tests were included from which recomm

endations for p-y curves were developed because those tests were well doc

umented (Matlock, 1970; Reese, et al., 1974; Reese, et al., 1975; Reese 

and Welch, 1975). 

No parametric studies were done to ensure the best fit of the analyt

ical methods to the experiments with one exception. Where the pil~ fail

ure came as a result of a soil failure, some computer analyses were done 

with piles of different penetrations. As noted earlier in this chapter, 

when piles are short the penetration is a critical parameter. 
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The computations by computer were made by using the appropriate p-y 

criteria. The ultimate moment of a steel member was computed by assuming 

that the yield stress of the steel was developed across the entire sec

tion. The ultimate moment of a reinforced concrete member was computed by 

using Computer Program PMEIX. The ultimate load by computer was found at 

the point where the computed maximum moment in the pile was equal to the 

ultimate moment. As noted above, there were a few cases where the piles 

failed by excessive deflection. Also, in some of the cases where the 

.ultimate moment is used to control the ultimate load, the deflection could 

be considered to be excessive. It should be noted, however, that the 

ultimate lateral load must be divided by an appropriate factor of safety 

to obtain the service load. It is the deflection at the service load that 

controls the design. 

The computations by the method of Broms were made as outlined in 

Chapter 7. An indication is given in each case as to whether or ~ot the 

ultimate load was due to a soil failure or to a pile (material) failure. 

The computations by the method of Poulos, outlined in Chapter 7, yields 

only a linear relationship between load and deflection as does the Broms 

method for deflection. Therefore, on the figures giving comparisons 

between theory and experiment, the Broms and Poulos curves for deflection 

are stopped well below the ultimate load. 

Some additional explanation beyond that presented in Chapter 7 is 

needed about the procedures employed in making computations with the Broms 

and Poulos methods. For some of the case histories considered herein, the 

soil deposit was not homogeneous as assumed in the analysis. Therefore, 

certain assumptions were used to evaluate an equivalent property repre

sentative of the non-homogeneous soil deposit. 

In order to assess a single value for a soil parameter in a layered 

deposit, the parameters were averaged for a depth of five pile diameters. 

A depth of five pile diameters was used because the uppermost soils influ

ence the pile behavior significantly. This depth was used for determining 

strength parameters (c, ~) and unit weights (r). These parameters were 

used to determine the maximum lateral pile capacity according to the Broms 

method and horizontal deflections according to the methods of both Poulos 

and Broms. Lateral deflections were computed at the groundline consider

ing the effects of both lateral load and moment. 

212 



In addition, specific relationships between parameters representing 

soil strength and parameters representing soil modulus had to be assumed. 

These relationships are discussed below. 

For cohesive soils, values of the soil modulus, a, for use in the 

Broms method were selected based on the shear strength of the soil. Shown 

in Fig. 9.20 is the relationship proposed by Terzaghi (1955), and pre

sented in Table 3.1 of this text. 
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Relationship between E and undrained shear strength 
for cohesive soil usedsin case studies. 

For a pile in cohesive soil, the lateral deflection was calculated 

using a beam-on-an-elastic-foundation equation. This equation is as fol

lows (Scott, 1981): 

= 2PtB sinh BL cosh BL - sin BL cos BL 
Yt a sinh 2 BL - sin 2 BL 

2M 82 sinh 2 BL + sin 2 BL 
+ t 

a sinh 2 BL - sin 2 BL (9.2) 
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where 

Yt = deflection at groundline 

pt = shear at groundline 

Mt = moment at groundline 

~ = ( a/4EI) 0•
2 5 

EI= bending stiffness of pile 

a = soil modulus 

L = pile length. 

For a pile in cohesionless material, a relationship between the angle 

of internal friction,¢, and the constant giving a variation in soil modu

lus with depth, k, was needed for the Brems computations. Terzaghi (1955) 

recommended values of k for different relative densities of the sand as 

presented in Table 3.2; however, Terzaghi's relationship is inconvenient 

due to inaccuracies in determining in-situ relative densities. There

fore, the correlation shown in Fig. 9.21 was used to obtain the relation

ship between¢ and k. 
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Fig. 9.21. Relationship between k and¢ for cohesionless soil. 

50 

Using the appropriate figure to determine either a or k, the Brems 

deflections were computed according to the methods outlined in Chapter 7. 
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Values of elastic modulus, Es, for cohesive soil for the Poulos com

putations were taken as equal to 40 times the undrained shear strength. 

Values of elastic modulus for cohesionless soils were originally pre

sented by Poulos as functions of relative density; however, as previously 

done for Terzaghi 1 s relationship, values of E were related to¢ as shown s 
in Fig. 9.22 . 
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Fig. 9.22. Relationship between Es and angle of 
internal friction for cohesionless soil. 

9.4 CASE STUDIES OF PILES IN CLAY 

Japanese Test 

45 

The results of short-term tests of free-head p~pe piles under lateral 

load were reported by the Japanese Committee of Research for Piles Sub

jected to Earthquake (1965). The results of Test Pile 3 will be dis

cussed. The test pile, shown in Fig. 9.23, was installed by jacking the 

closed-ended pile into place. 

The soil at the site was a soft, medium to highly plastic, silty clay 

with a high sensitivity. The undrained shear strength for the deposit, 

shown in 9.23, was obtained from undrained triaxial tests. The strains at 

failure were generally less than 5 percent, and the specimens failed by 

bri tt 1 e fracturing. The E 50 va 1 ues were obtained from the reported 

stress-strain curves. 
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Fig. 9.23. Information for the analysis of Japanese test. 

12 in. 

A comparison of the measured and computed results is presented in 

Fig. 9.24. The figure shows that the ultimate lateral load computed by 

the.Broms method is higher than that from the computer. The load versus 

deflection curves from the Broms and Poulos methods are quite conserva

tive; the computer gave a load-deflection curve that was in reasonably 

good agreement with the experiment. Reasonably good agreement was also 

obtained between computed and measured maximum moment. 

St. Gabriel 

A load test was performed on a free-head, 10 in., concrete-filled, 

pipe pile near St. Gabriel, Louisiana (Capazzoli, 1968). The loading was 

short-term. The test piles were driven vertically to a depth of 115 ft. 

The test setup and pile properties are shown in Fig. 9.25. 

The soil at the site was a soft to medium, intact, silty clay. The 

natural moisture content of the clay varied from 35 to 46 percent in the 

upper 10 ft of soil. The undrained shear strengths, shown in Fig. 9.25, 

were obtained from triaxial tests. 

216 



20-------------------------r----~ 

,,, 
Q. 

~ 15 

-a.. 

'1:J 

g 10 
....I 

C, .. 
Cl) -.:: 5 

Pult Broms (pile failure) 

Pult Computer 

-- _ - Poulos -
Groundline 

o Measured 

Broms 

2 
Deflection , Yt , in. 

20----------------------------...----~ 

a.-

'1:J 
o I 0 
0 

....I 

C, .. 
Cl) -.3 5 

M = 73 2 X 10 4 ft-kips ult · 

Computer 

o Measured 

0---------...._ ________ __._ ____________ _ 
0 20 40 60 80 100 

Maximum Moment , ft- kips 

Fig. 9.24. Comparison of measured and computed results 
for Japanese test. 

217 

120 



A comparison of the measured and computed results is shown in Fig. 

9.26. The ultimate lateral load computed by the Broms method is higher 

than that from the computer. The in it i a 1 s 1 ope of the 

1 oad-versus-defl ect ion curve from the computer agrees we 11 with the 

experiment. The deflection curve from the computer is somewhat conserva

tive at the higher loads. The Poulos and Broms deflection curves are 

slightly conservative to very conservative, respectively. 

Southern California 

Bhushan, et a 1. ( 1978) reported the results of 1 atera 1 1 oad tests 

performed on drilled shafts for a transmission line. Cyclic loading was 

not used. The results of three tests performed at two sites will be dis

cussed. The three piles were straight-sided and reinforced with 3 percent 

steel. The lateral loads were applied incrementally, and each increment 

was held constant for at least 40 minutes. 

At both sites, the soils were silty and sandy clays of low to medium 

plasticity. The liquid limit was between 30 and 58 and the plasticity 

index was between 15 and 20. The natural water content was at or below the 

plastic limit, indicating that the soil was heavily overconsolidated. 

The values of undrained shear strength and E 50 were obtained from 

undrained triaxial tests of intact samples. The authors reported a great 

deal of scatter in the results of the tests used to define the undrained 

strength, c. The large amount of scatter inc is common for desiccated, 

heavily overconsolidated soils. In the following analyses, the average c 

and E50 values reported by the authors for each test site were used. 

The data used in the analysis of Test Pile 2 are shown in Fig. 9.27. 

A comparison of the measured and computed results is shown in Fig. 9.28. 

As seen in the figure, the computed values of Pult from the Broms method 

and from the computer are in rea·scnable agreement but are perhaps less 

than the value that would have been obtained by experiment had the pile 

been loaded to collapse. Because the pile was short, computations were 

performed by computer for the 15-f t 1 ength and for an 18-f t 1 ength. The 

18-ft length resulted in a higher load but the load-deflection curves for 

smaller loads were identical. 

The deflection curve for Test Pile 2 from the computer is in good 

agreement with the experiment at lighter loads but is conservative at lar

ger loads. The deflection curves from the Broms and Poulos methods are 

conservative. 

218 



I ft 
Ground Surface 

6 ft IO In. 
G.W.T . . _._ ____ _ 

Pile Cross section 
Pile Properties 

115 ft 
E I = 3 8 x I O 9 I b - sq in. 
b = 10 In. 

"' 20 
Cl. 

.:.: 

-a.. 

"'C 
0 
0 
...J 

0 10 ... 
<I) -0 
...J 

My= 116 ft:-kips 

Soll Properties 

Depth= 0-15ft 
c = 600 lb/sq ft 

E 50 = I% 

y = 110 lb/cuft 

Fig. 9.25. Information for analysis of test at St. Gabriel. 

Putt Broms ( pile failure) 

Putt Computer 

0 

0 

oulos Broms 

0 2 4 6 8 10 

Groundline Deflection, Yt, in. 

Fig. 9.26. Comparison of measured and computed results for 
St. Gabriel Test. 

219 

12 



0.7 5 ft 

pt-----~-

15 ft 

Dial Gage 

Ground Surface 

Pile Properties 

El =8.2 x 10 11 lb-sq in. 

b=48 in. 

My= 4385 ft- kips 

Soil Properties 

Depth= 0 15 ft 

c = 5 5 0 0 I b I sq ft 

E 50 =0.94¾ 

y. = 13 0 I b I cu ft 

48 in. 

Pile Cross section 

total area of rebars 
= 3.0% of gross area 
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The data used in the analyses of Test Piles 6 and 8 are shown in Fig. 

9.29. As noted, Test Pile 6 was 48 in. in diameter and Test Pile 8 was 24 

in. in diameter. A comparison of the measured and computed results for 

Test Pile 6 is shown in Fig. 9.30. A soil failure was computed by the 

Broms method and by the computer. The values from both methods of analy

sis, even when the pile was increased in length to 20 ft in the computer 

analysis, are conservative . 

. 75 ft 
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Ground Surface 
........ ~,........./ 

24 In. 

lcr 
Pile Cross section 

total area of rebars 
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8 52xlo 10 24 503 
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Depth=0-l6ft 
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y = I 3 0 I b / cu ft 

Fig. 9.29, Information for the analysis of Southern California 
Test Pi 1 e 6. 

The deflection curve for Test Pile 6 from the computer is in good 

agreement with the experiment at lighter loads but is conservative at lar

ger loads. The deflection curves from Broms and Poulos are conservative. 
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A comparison of the measured and computed results for Test Pile 8 is 

shown in Fig. 9.31. Comparatively, the results for this test are similar 

to those of the other two in this series. A pile failure was computed, in 

contrast with soil failures for the other two tests, but again the com

puted results are generally conservative with respect to the experiment. 

It is of interest to note that if a factor of safety had been used to 

reduce the computed Pult to obtain a service load, there would be good to 

excellent agreement between computed and measured deflections. 

Lake Austin 

The test program consisted of both short-term and cyclic tests of a 

yree-head pile (Matlock, 1970). Water was kept above the ground surface 

for the entire test program. The pile was 12.75 in. in diameter, had a 

penetration of 42 ft, and was instrumented to measure moment along its 

length. The load was applied at a few inches above the mudline. The bend

ing stiffness EI of the pile was 10.9 x 10 9 lb-sq in. 

The clay at the site was slightly overconsolidated by desiccation and 

was slightly fissured. The shear strength was measured with a vane and 

averaged 800 lb/sq ft. The £ 50 was 0.012 and the submerged unit weight 

was 50 lb/cu ft. 
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Figure 9.32 shows a comparison of measured and computed deflections. 

The results from cyclic loading are shown in Fig. 9.32a and from static 

loading in Fig. 9.32b. Also shown by a note in Fig. 9.32b are the computed 

ultimate loads by the Broms and computer methods. It can be seen that the 

experimental loading was stopped well below the ultimate capacity of the 

piles. The instrumented piles were employed at another site. 

There is reasonable agreement between the deflection curves from the 

experiment and from the computer at the lower loads, but a considerable 

deviation at the higher loads. The Poulos curve fell close to the exper

imental curve for static loading but the Broms curve was conservative. 

A comparison of the measured and computed maximum moments for the 

Lake Austin pile are shown in Fig. 9.33. The comparison for static load

ing is good but the computer under-predicts the maximum moments for cyclic 

loading. 

Sabine 

The piles used in the Lake Austin tests were pulled and re-driven at 

Sabine (Matlock, 1970). Static and cyclic loads were applied with the 

pile head free to rotate and with the pile head restrained against rota

tion. The restrained-head tests are not discussed herein. The point of 

application of the load was 12 in. above the mudline. Water was kept 

above the mudline throughout the testing program. 
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The clay at the site was a slightly overconsolidated marine deposit. 

The undrained shear strength was about 300 lb/sq ft and the submerged unit 

weight was 35 lb/cu ft. The strain E 50 at one-half the compressive 

strength was 0.007. 

A comparison of measured and computed deflections is shown in Fig. 

9.34. The results from cyclic loading are shown in Fig. 9.34a and from 

static loading in Fig. 9.34b. The computed ultimate loads from the Brems 

method and from the computer are shown in Fig. 9.34b. There is excellent 

agreement between the experimental and the computed deflections for stat

ic loading. The deflections for the cylic case are under-predicted by the 

computer. The deflection curves from the Broms and Poulos methods, shown 

in Fig. 9.34b, are conservative. 
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Figure 9.35 shows a comparison of the measured and computed maximum 

moments for the Sabine tests. In both instances, the comparisons are 

exce 11 ent. 

f/J 
Q. 
.¥: 

o..-

'O 
C 
0 
..J 

C ... 
Q) -C 

..J 

Houston 

20------.-----,,_-----.--------1 

15 
Computed 

Static 

10 
Computed 

Cyclic 

5 
0 Measured Cyclic 

D. Measured Static 

0 
0 5 10 15 20 

Maximum Moment, in:lb x 10~ 

Fig. 9.35. Comparison of measured and computed 
maximum moments for Sabine Test. 

A drilled shaft was tested at a site in Houston (Reese and Welch, 

1975). The diameter of·the pile was 30 in. and the penetration was 42 ft. 

The foundation was instrumented along its length for the measurement of 

bending moment. Difficulty was encountered in getting the excavation 

filled with concrete because of the close spacing of the reinforcing steel 

and there was a cavity near the top of the shaft. Field measurements 

indicated that the bending stiffness EI of the pile was about 1.47 x 10 11 

lb-sq in. 
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The pile head was free to rotate and a combined static-cylic loading 

program was employed. A given load was applied, measurements were taken, 

and the load was removed and re-applied a number of times. A total of 20 

cycles of loading was applied at each load increment. 

The soil profile consisted of 28 ft of stiff to very stiff red clay, 

2 ft of interspersed silt and clay layers, and very stiff silty clay to a 

depth o{ 42 ft. The water table was at a depth of 18 ft. The undrained 

shear strength was determined by triaxial tests and was found to vary 

widely in the top 20 ft. A value of 2.2 kips/sq ft was selected for ana

lyses. The average value of ESO was 0.005, and the unit weight of the clay 

was 120 lb/cu ft. 

A comparison of measured and computed deflections is presented in 

Fig. 9.36. The results from cyclic loading (10 cycles) are shown in Fig. 

9.36a and from static loading in Fig. 9.36b. The computed ultimate loads 

from the Broms method and from the computer method a re shown in Fig. 

9.36b. There is good to excellent agreement between the experimental 

deflection curves and the results from the computer. The Broms method 

appears to under-estimate the ultimate load. The deflection curves from 

the Poulos and Broms methods are conservative. 

Figure 9.37 shows the comparisons between the measured and computed 

maximum moments for the Houston test. The agreement is good to excellent. 

Manor 

Tests were performed on stee 1 pipe piles that were 25. 25 in. in 

diameter and with a penetration of 49 ft. The piles were instrumented 

along their length for the measurement of bending moment. The pile heads 

were unrestrained against rotation and both static and cy~lic tests were 

performed. 

An excavation about 5 ft deep was made at the site and water was 

ponded for several weeks prior to and during the testing. The soil was a 

stiff, fissured clay. The undrained shear strength was measured by triax

ial tests; there was much scatter in the results but in reneral the shear 

strength increased rapidly with depth. The following depths and undrained 

shear strengths were used in the analyses (feet and kips/sq ft, respec

tively): 0, 0.4; 1.0, 1.6; 13.0, 7.0; 21.0, 7.0. The average value of E 50 
at the site was 0.005 and the submerged unit weight of the clay was 65 

lb/cu ft. 
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for Houston Test. 

Figure 9.38 shows the comparison between the measured and computed 

deflections. The results from cyclic loading are shown in Fig. 9.38a and 

from static loading in 9.38b. The computed ultimate loads from the Broms 

method and from the computer method are indicated in Fig. 9.38b. There is 

generally good agreement between the experimental deflection curves and 

those from the computer. The deflection curves from the Broms and Poulos 

methods are conservative. 

Figure 9.39 shows the comparisons between the measured and computed 

maximum moments for the Manor test. The agreement is good to excellent. 

9.5 CASE STUDIES OF PILES IN SAND 

Gill Tests 

Gill (1969) reported the results of four lateral load tests performed 

on pipe piles. The piles were of different stiffnesses and were all 

embedded to a sufficient depth so that they behaved as flexible members. 

The pile heads were free to rotate during testing and the 1 oads were 

applied statically. 
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The soil at the site was mainly an old hydraulic fill which had been 

placed in the 1940 1 s (Gill, 1969). A compacted granular surface had 

reportedly been placed over the hydraulic fill. This compacted surface 

could account for the high blow count of 58 blows/ft at a depth of 2 ft, 

shown in Fig. 9.40. Below 2 ft, the blow count decreased rapidly until it 

reached 16 blows/ft at a depth of 4.5 ft. No information concerning the 

SPT resistance of the material was given below 4.5 ft, and it was assumed 

that the relative density was constant below that depth. 

The data shown in Fig. 9.40 were used in the analyses and the result

ing curves are shown in Figs. 9.41 through 9.44. As may be seen in the 

figures, the initial slopes of the curves from the computer, from Broms, 

and from Poulos are in good agreement and also agree reasonably well with 

the initial slopes of the experimental curves. The ultimate capacities 

obtained from the computer and from Broms are in reasonable agreement. At 

the larger loads the deflection curves from the computer agree well with 

the experiments or are somewhat conservative. 
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Fig. 9.40. Information for the analysis of tests in hydraulic fill. 
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Arkansas River 

A number of lateral load tests were performed for the Corps of Engi

neers by Fugro and Associates at a site on the Arkansas River near Pine 

Bluff, Arkansas (Alizadeh and Davisson, 1970). Test Piles 2 was a pipe 

pile with a 16 in. outside diameter and modified by welding four steel 

channels (4 x 7.25) at 90 degrees apart around the exterior of the pipe. 

It was installed by driving. The bending stiffness of the pile was 2.44 x 

10 10 lb-sq in. and it had a penetration of 53 ft. The ultimate moment 

capacity MY of the pile section was computed to be 778 ft-kips. 

The pile head was free to rotate during testing and the lateral load 

was applied 0.1 ft above the groundline. Static loading was used in the 

testing program. The pile was instrumented along its length for the meas

urement of bending moment. 

The soil conditions at the site are shown in Fig. 9.45. As may be 

noted, the water table was near the ground surface. The soil of primary 

importance with regard to lateral loading is the sand, classified as SP by 

the Unified method; the sand extends from the ground surface to a depth of 

about 22 ft. 

Figure 9.46 shows the comparison between the measured and computed 

deflections for Test Pile 2. The computer predicts a higher Pult than 

does Broms. The deflections from Broms and Poulos are larger than the 

measured deflections and the deflection curve from the computer is stiffer 

than either of these at lower loads. There is some indication that the 

sand near the ground surface was denser than assumed, which may account 

for some of the lack of agreement between the computer and the experiment. 

The comparison between the measured and computed maximum bending 

moments is shown in Fig. 9.47. As may be seen, the computed results are 

somewhat conservative with regard to the measured values. 

Test Pile 6 at the Arkansas River site was a 14BP73 steel bearing 

pipe that was driven into place. The pile had a bending stiffness EI of 

2.15 x 10 10 lb-sq in. and a width of 14 in. Its ultimate-moment capacity 

was computed to be 397 ft-kips. The penetration of the pile was 40 ft. 

A comparison of the measured and computed results for Test Pile 6 is 

shown in Fig. 9.48. The results are similar to those for Test Pile 2 as 

shown in Fig. 9.46. 
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A load test was performed by the Florida Power and Light Company 

(Davis, 1977) on a 56-in. 0.0. steel tube that was vibrated to a depth of 

26 ft. The interior of the tube was filled with concrete and a utility 

pole was embedded in the upper part of the tube so that the load could be 

applied at 51 ft above the groundline. The bending stiffness of the pile 

was computed to be 1.77 x 10 12 lb-sq in. in the top 4 ft and 8.8 x 10 11 

lb-sq in. below that. The ultimate-moment capacity of the pile was com

puted to be 4,630 ft-kips. The loads were applied statically. 

The soil profile consisted of 13 ft of medium dense sand overlying 

stiff to very stiff sandy, silty clay. The water table was at a depth of 2 

ft. The angle of internal friction of the sand was estimated at 38° and 
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the undrained shear strength of the clay was estimated at 2.5 kips/sq ft. 

The total unit weight of the soil was 115 lb/cu ft and the submerged unit 

weight was 60 lb/cu ft. 
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Fig. 9.48. Comparison of measured and computed results 
for Arkansas River Test Pile 6. 

2.5 

Figure 9.49 gives the comparison between the measured and computed 

results. The agreement between measured deflections and those from com

puter are in excellent agreement. The deflection curves from Broms and 

Poulos are conservative. The same value of of ultimate load (84 kips) was 

obtained from the Broms method and from the computer. 

Mustang Island 

Tests were performed at Mustang Island near Corpus Christi, Texas, on 

two 24-in. 0.0. pipe piles that were instrumented along their lengths for 

the measurement of bending moment (Reese, et al., 1974). One of the piles 

was subjected to static loads and the other to cyclic loads. The pile 

heads were free to rotate and the loads were applied one foot above the 

groundline. The penetration of the piles was 69 ft. 
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The soil at the site consisted of clean fine sand to silty fine sand. 

An excavation was made at the site to a depth of about 5 ft and the natural 

water table was above the testing surface. A program of in situ tests and 

laboratory soil tests was conducted at the site. The angle of internal 

friction was found to be 39° and the submerged unit was 66 lb/cu ft. 
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Fig. 9.49. Comparison of measured and computed 
results for Florida Test. 

Figure 9.50 shows the comparison betweeen the measured and computed 

deflections. The results from cyclic loading are shown in Fig. 9.50a and 

from static loading in 9.50b. The computed ultimate loads from the Broms 

method and from the computer method are indicated in Fig. 9.50b. There is 

exce 11 ent agreement between the experi mental deflection curves and the 

ones from the computer. The deflection curves from the Broms and Poulos 

methods are slightly conservative. 
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for Mustang Island Test. 
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Figure 9.51 shows the comparisons between the measured and computed 

maximum moments for the Mustang Island Test. The agreement is excellent. 
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Fig. 9.51. Comparison of measured and computed maximum 
moments for Mustang Island Test. 

9.6 COMMENTS ON RESULTS OF CASE STUDIES 

The comparisons in the preceding sections show agreements between 

experiment and analysis that range from fair to excellent. At the present 

time it cannot be stated with certainty that the fair agreement is due to 

deficiencies in the analytical methods or to poor data from the exper

iments. It can be stated, however, that an excellent soil investigation 

is mandatory when design of piles under lateral loading is to be done. As 
noted earlier, the soils near the ground surface need careful attention. 

The construction method also needs careful control. 
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The computer method appears to be more versatile. Even in those cas

es where agreement between the results from the computer and those from 

experiment, the use of a factor of safety in the range of those normally 

used for foundation design would lead to an acceptable solution. 

The reader can examine the cases that are presented and reach a deci

sion about the factor of safety that should be employed in any particular 

design. On important jobs, of course, the design should be confirmed with 

a full-scale field load test. The test should be performed in such a way 

that the experimental results can be analyzed with the computer. That is, 

the careful measurement of load, pile-head deflection, and pile-head 

rotation will allow the soil response to be ascertained (Reese and Cox, 

1968). The soil response so obtained can then be used in the design for 

different pile-head conditions or for piles of different sizes, with 

appropriate adjustment. 
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9.8 EXERCISES 

9.1 Do a parameter study for a 30-in. 0.0. pile in sand. 

9.2 Do a parameter study for a 30-in. 0.0. pile in clay. 

9.3 Find in the technical literature or in company files the results 

of a field test of a pile under lateral loading. Analyze the test accord

ing to the procedures employed in this chapter. 
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CHAPTER 10. ANALYSIS OF PILE GROUPS UNDER LATERAL LOADING 

10. 1 INTRODUCTION 

There are two general problems in the analysis of pile groups: the 

computation of the loads coming to each pile in the group, and the deter

mination of the efficiency of a group of closely-spaced piles. Each of 

these problems will be discussed in the following sections. 

The methods that are presented are applicable to a pile group that is 

symmetrical about the line of action of the lateral load. That is, there 

is no twisting of the pile group so that no pile is subjected to torsion. 

Therefore, each pile in the group can undergo two translations and a rota

tion~ However, the method that is presented for obtaining the distrib

ution of loading to each pile can be extended to the general case where 

each pile can undergo three translations and three rotations (Reese, et 

al., 1970; O'Neill, et al., 1977; Bryant, 1977). 

In all of the analyses presented in this section, the assumption is 

made that the soil does not act against the pile cap. In many instances, 

of course, the pile cap is cast against the soil. However, it is possible 

that soil can settle away from the cap and that the piles will sustain the 

full load. Thus, it is conservative and perhaps logical to assume that 

the pile cap is ineffective in carrying any load. 

If the piles that support a structure are spaced far enough apart 

that the stress transfer between them is minimal and if the loading is 

shear only, the methods presented earlier in this work can be employed. 

Kuthy, et al. (1977) present an excellent treatment of this latter prob-

1 em. 

10.2 DISTRIBUTION OF LOAD TO EACH PILE IN A GROUP 

The derivation of the equations presented in this section is based on 

the assumption that the piles are spaced far enough apart that there is no 

loss of efficiency; thus, the distribution of stress and deformation from 

a given pile to other piles in the group need not be considered. However, 

the method that is derived can be used with a group of closely-spaced 

piles but another level of iteration will be required. 

Problem Statement 

The problem to be solved is shown in Fig. 10.1. Three piles support

ing a pile cap are shown. The piles may be of any size and placed on any 
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batter and may have any penetration below the groundline. The bent may be 

supported by any number of piles but, as noted earlier, the piles are 

assumed to be placed far enough apart that each is 100% efficient. 

\ 
I 

A 

T 
8 

Fig. 10.1. Typical pile-supported bent. 

The soil and loading may have any characteristics for which the 

response of a single pile may be computed. 

Loading and Movement of the Structure 

The derivation of the necessary equations in general form proceeds 

conveniently from consideration of a simplified structure such as that 

shown in Fig. 10.2 (Reese and Matlock, 1966; Reese, 1966). The sign con

ventions for the loading and for the geometry are shown. A global coordi

nate system, a-b, is established with reference to the structure. A 

coordinate system, x-y, is established for each of the piles. For conven

ience in deriving the equilibrium equations for solution of the problem, 

the a-b axes are located so that all of the coordinates of the pile heads 

are positive. 

246 



~ (+) 

b 

~h 
( +) 

b 

M (+) 
Y2 

Pv (+) a, ( +) 
b,(+) 

a ( +) 

I 
x, 

U~--.--;:67:vT.( +~)~------7 :., + i 
L _........,,,-~--=- - - - - - - - - - - - -

Fig. 10.2. Simplified structure showing coordinate systems 
and sign conventions (after Reese and Matlockt 

247 

(a) 

( b) 



The soil is not shown, but as shown in Fig. 10.2b, it is desirable to 

replace the piles with a set of 11 springs 11 (mechanisms) that represent the 

interaction between the piles and the supporting soil. 

Movement of a Pile Head 

If the global coordinate system translates horizontally Ah and ver

tically Av and if the coordinate system rotates through the angle a , the 
s 

movement of the head of each of the piles can be readily f6und. The angle 

as is assumed to be small in the derivation. 

The movement of a pile head xt in the direction of the axis of the 

pile is 

xt=(Ah+ba)sin8+(Av+aa)cos8. (10.1) s s 
The movement of a pile head yt transverse to the direction of the axis of 

the pile (the lateral deflection) is 

yt =(Ah+ bas) cos 8 - (Av+ aas) sin 8. (10.2) 

The assumption is made in deriving Eqs. 10.1 and 10.2 that the pile heads 

have the same relative positions in space before and after loading. 

Forces and Moments 

The movements computed by Eqs. 10.1 and 10.2 will generate forces and 

moments at the pile head. The assumption is made that curves can be 

developed, usually nonlinear, that give the relationship between 

pile-head movement and pile-head forces. A secant to a curve is obtained 

at the point of deflection and called the modulus of pile-head resistance. 

The values of the moduli, so obtained, can then be used, as shown below, 

to ·compute the components of movement of the structure. If the values of 

the moduli that were selected were incorrect, iterations are made until 

convergence is obtained. 

Using sign conventions established for the single pile under lateral 

loading, the lateral force Pt at the pile head may be defined as follows: 

pt= Jyyt. (10.3) 

If there is some rotational restraint at the pile-head, the moment is 

Mt= -Jmyt. (10.4) 

The moduli JY and Jm are not single-valued functions of pile-head trans

lation but are functions also of the rotation a of the structure. 
s 

If it is assumed that a compressive load causes a positive deflection 

along the pile axis, the axial force P may be defined as follows: 
X 

Px = Jxxt. (10.5) 

It is usually assumed that Px is a single-value function of xt. 
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The forces at the pile head defined in Eqs. 10.3 through 10.5 may now 

be resolved into vertical and horizontal components of force on the struc

ture, as follows: 

Fv = -(Pxcos 0 - Ptsin 0) , and 

Fh = -(Pxsin 0 + Ptcos a) 
(10.6) 

(10.7) 
The moment on the structure is 

Ms = Jmy t · 
Equilibrium Equations 

(10.8) 

The equilibrium equations can now be written, as follows: 

P + EF = 0 (10.9) V V. ' 
l 

Ph+ rFh. = 0, and (10.10) 
l 

M + rM + ra . F + rb. Fh = 0. (10 .11) 
S. l V. l . 

l l l 
The subscript i refers to values from any 11 i-th 11 pile. Using Eqs. 10.1 

through 10.8, Eqs. 10.9 through 10.11 may be written in terms of the 

structural movements. 

I 
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+ b.(J sin 2 0. + J 
l X. l y. 

l l 
cos 2 ei) ]as I = p 

h 

(10.12) 

8i + J cos 2 8 i] 6h 
Yi 

{10.13) 

sin 0. + a.(J cos 2 0. + J sin 2 0.) + b.(J - J ) 
l l Xi l Yi l l Xi Yi 

sin 0i cos 0i]6v + [-J cos 0. + a.(J - J )sin 0. cos 0. 
mi l l Xi Yi l l 

+ b.(J cos 2 0. + J cos 2 0.)]llh + (J (a. sin 0. - b. cos 0.) 
l Xi l Yi l mi l l l l 

+ ( J cos 2 8. + J sin 2 0.)a. 2 + (J sin 2 8. + J cos 2 0.)b. 2 
x. l y. l l Xi l Yi l l 

l l 

+ 2(J - J )(sin 8. cos e.)a.b} I = M {10.14) 
X. y. l l l l S 

l l 
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Several of the terms in the above equation occur a number of times; 

it is convenient to define five terms as shown below. 

A. = J cos 2 e. + J sin 2 e. (10.15) 
l X. l Yi l 

l 

B. = (J - J ) 
l Xi Yi 

sin ei cos ei (10.16) 

C. = J sin 2 e. + J cos 2 e. (10.17) 
l Xi l Yi l 

D. = J sin e. (10.18) 
l m. l 

l 

E. = -J cos e. (10.19) 
l m. l 

l 

Equations 10.12 through 10 .14 can be simplified by use of the above 

expressions. Equations 10.20 through 10.22 are the final form of the 

equilibrium equations. 

LW [Z A. 1 
l 

+ 6h [ Z B.] 
l 

+ a [Z 
s 

6V[Z B.] 
l 

+ 6h[Z C.] 
l 

+ a [Z s 

6V [ Z D. + z a.A.+ Z b.B.] 
l l l l l 

+ a [Z a.D. + Z a. 2 
S l l 

+ Z 2a.b.B.] = M 
l l l 

l 
A. + z 

l 

a.A. + z b. B.] = p (10.20) 
l l l l V 

a.B. + z b. C. 1 = Ph (10.21) 
l l l l 

+ 6h[Z E. + z a .B. + z b. C.] 
l l l l l 

b.E. + z b.2 C. 
l l l l 

(10.22) 

The equilibrium equations can be solved in any convenient way. 

Because of the number of operations required, it is usually convenient to 

use a digital computer (Awoshika, 1971; Lam, 1982). 

Solution Procedure 

1. Select a coordinate center and find the horizontal compo

nent, the vertical component, and the moment through and 

about that point. 

2. Compute by some procedure (Reese, 1964; Coyle and Reese, 

1966; Coyle and Sulaiman, 1967; Kraft, et al., 1981) a curve 

showing axial load versus axial deflection for each pile in 

the group. An al tern ate procedure is to use the results 

from a field load test. A typical curve is shown in Fig. 

10.3a. 

3. Use procedures presented earlier in this work and compute 

curves showing lateral load as a function of lateral 
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deflection and moment as a function of lateral deflection. 

In making these computations, attention must be paid to the 

effect of structural rotation on the boundary conditions at 

each pile head. Typical curves are shown in Figs. 10.3b and 

10.3c. 

4. Trial values of Jx, JY, and Jm are estimated for each pile 

in the structure. 

5. Equations 10.15 through 10.22 are solved for values of iv, 

ih,andas. 

6. Pile-head movements are computed and new values of Jx, Jy, 

and Jm are obtained for each pile. Curves such as those 

shown in Fig. 10.3 are employed or a computer solution 

yields directly the values of the moduli. 

7. Equations 10.15 through 10.22 are solved again for new val

ues of iv, ih, and as. 

8. Iteration is continued until the computed values of the 

structural movements agree, within a given tolerance, with 

the values from the previous computation. 

9. The loads and moments at each pile head can then be used to 

compute the stresses along the length of each pile. 

Example Problem 

Figure 10.4 shows a pile-supported retaining wall with the piles 

spaced 8 ft apart. The piles are 14-in. in outside diameter with 4 No. 7 

reinforcing-steel bars spaced equally. The centers of the bars are on an 

8-in. circle. The yield strength of the reinforcing steel is 60 kips/sq 

in. and the compressive strength of the concrete is 2.67 kips/sq in. The 

length of the piles is 40 ft. 

The backfill is a free-draining, granular soil without any fine par

ticles. The surface of the backfill is treated to facilitate runoff and 

weep holes are provided so that water will not collect behind the wall. 

The forces P1, P2 , Ps, and Pw were computed as follows: 21.4, 4.6, 

18.4, and 22.5 kips, respectively. The resolution of the loads ·at the 

origin of the global coordinate system resulted in the following service 

loads: Pv = 46 kips, Ph= 21 kips, and M = 40 ft-kips (some rounding was 

done). 

The moment of inertia of the gross section of the pile was used in 

the analysis. The bending stiffness EI of the piles was computed to be 
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Fig. 10.3. Set of pile resistance functions 
for a given pile. 
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Fig. 10.4. Sketch of a pile-supported retaining wall. 

5.56 x 10 9 lb-sq in. Computer Program PMEIX was run and an interaction 

diagram for the pile was obtained. That diagram is shown in Fig. 10.5. 

A field load test was performed at the site and the ultimate axial 

capacity of a pile was found to be 176 kips. An analysis was made' to 

develop a curve showing axial load versus settlement. The curve is shown 

in Fig. 10.6. 

The subsurface soils at the site consist of silty clay. The water 

content in the top 10 ft averaged 20% and below 10 ft it averaged 44%. The 

water table was reported to be at a depth of 10 ft. There was a consider

able range in the undrained shear strength of the clay and an average val

ue of 3 kips/sq ft was used in the analysis. A value of the submerged unit 

weight of 46 lb/cu ft was employed and the value of s 50 was estimated to 

be 0.005. 
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Fig. 10.6. Axial load versus settlement 
for reinforced concrete pile. 

In making the computations, the'assumptions were made that all of the 

load was carried by the piles with none of the load taken by passive earth 

pressure or by the base of the footing. It was further assumed that the 

pile heads were free to rotate. As noted earlier, the factor of safety 
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must be in the loading. Therefore, the loadings shown in Table 10.1 were 

used in the preliminary computations. 

TABLE 10.1. VALUES OF LOADING EMPLOYED IN ANALYSES. 

Case Loads, kips moment, ft-kips Comment 

p Ph V 

1 46 21 40 service load 

2 69 31. 5 60 1.5 times service load 

3 92 42 80 2 times service load 

4 115 52.5 100 2.5 times service load 

Table 10.2 shows the movements of the origin of the global coordinate 

system when Eqs. 10.20 through 10.22 were solved simultaneously. The 

loadings were such that the pile response was almost linear so only a 

small number of iterations werE required to achieve convergence. The com

puted pile-head movements, loads, and moments are shown in Table 10.3. 

TABLE 10.2. COMPUTED MOVEMENTS OF ORIGIN OF GLOBAL COORDINATE SYSTEM. 

Case Vertical Movement ~v Horizontal Movement ~h Rotation a 

inches inches rad 

1 0.004 0.08 9 X 1 □- 5 

2 0.005 0.12 1.4 X 1 □-4 

3 0.008 0.16 1.6 X 10-4 

4 0.017 0.203 8.4 X 10-4 
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TABLE 10.3. COMPUTED MOVEMENTS AND LOADS AT PILE HEADS. 

C Pile 1 Pile 2 

a p pt Mmax Yt PX pt Mmax xt Yt X xt 
s 

e in. in. kips kips in.-kips in. in. kips kips in.-kips 

1 .0.005 0.08 9.7 6.0 148 0.02 0.077 38.9 5.8 143 

2 0.008 0.12 14.5 9.0 222 0.03 0.116 58.3 8.6 215 

3 0.011 0.162 19.3 12 .1 298 0.04 0 .156 77. 7 11. 5 288 

4 0.013 0.203 24.2 15.2 373 0.06 0.194 97.2 14.3 360 

The computed loading on the piles is shown in Fig. 10.7 for Case 4. 

The following check is made to see that the equilibrium equations are sat

isfied. 

IF = 24.2 + 97.2 cos 14° - 14.3 sin 14° 
V 

= 24.2 + 94.3 - 3.5 = 114.9 kips OK 

IFh = 15.2 + 14.3 cos 14° - 97.2 sin 14° 

= 15.2 + 13.9 + 23.6 = 52.7 kips OK 

IM = -(24.2)(1.5) + (97.2 cos 14° )(1.5) 

- (14.3 sin 14° )(1.5) 

= -36.3 + 141.4 - 5.2 = 99.9 ft-kips OK 

Thus, the retaining wall is in equilibrium. A further check can be made 

to see that the conditions of compatibility are satisfied. One check can 

be made at once. Referring to Fig.· 10.6, an axial load of 97.2 kips 

results in an axial deflection of about 0.054 in., a value in reasonable 

agreement with the value in Table l~.3. Further checks on compatibility 

can be made by using the pile-head loadings and Computer Program COM622 to 

see if the computed deflections under lateral load are consistent with the 

values tabulated in Table 10.3. 

No firm conclusions can be made concerning the adequacy of-the par-. 
ticular design without further study: If the assumptions made in perform-

ing the analyses are appropriate, the results of the analyses show the 

foundation to be capable of supporting the load. As a matter of fact, the 

piles could probably support a wall of greater height. 
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Fig. 10.7. Pile loading, Case 4. 

With a multiplier of 2.5 times the service loads, the batter pile 

takes an axial load of 97 kips which is well short of the ultimate capaci

ty of the pile as shown in Fig. 10.6. Figure 10.5 shows that Pile 1 should 

be able to sustain an ultimate moment of about 700 in-kips and under Case 

4 (2.5 times the service load) the actual moment is about 373 in.-kips. 

The example problem illustrates the use of the procedure. The exam

ple shows further that an the appropriate solution of a design problem 

probably should involve a number of computations in which the important 

parameters in the problem are varied through a range that represents the 

reasonable uncertainty . 

10.3 BEHAVIOR OF A GROUP OF CLOSELY-SPACED PILES 

The analysis of a group of closely-spaced piles under lateral loading 

can be undertaken by a number of methods, two of which will be presented 

herein. The most obvious problem is to take into account the effect of a 

single pile on others in the group. Approximate solutions have been 

developed (Poulos, 1971b; Banerjee and Davies, 1979) by use of the 

equations of elasticity; however, as demonstrated in Chapter 8, the 

assumption of a linear response of the soil-pile system is inadequate to 

deal with many problems of a pile under lateral loading. 

The first method that will be presented uses a combination of the 

elastic method with the p-y method. The second method is the single-pile 

approach to group analysis. 
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The principal difficulty in achieving an acceptable solution to the 

closely-spaced group is that there have been few full-scale load tests of 

such groups. Such tests are expensive and difficult to carry out. There

fore, the methods that are presented here must only be used in consider

ation of the assumptions that underlie each of the methods. 

Poulos-Focht-Koch Method 

The. following equation was developed by Poulos (1971a, 1971b) to 

obtain the deflection and load on each of the piles in a group, assuming 

the soil to act elastically. 

where 

m 

Pk = PF .L (HJ.apFkJ. + Hk) 
J=l 

(10.23) 

H. 
J 

Hk 

= deflection of the k-th pile 

= the unit reference displacement of a single pile 

under a unit horizontal load, computed by using 

elastic theory 

= lateral load on pile j 

= the coefficent to get the influence of pile 

j on pile kin computing the deflection p 

(the subscript F pertains to the fixed-head case 

and is used here for convenience; there are also 

influence coefficients as shown later where shear 

is applied, apHkj' and where moment is applied, 

apMkj) 
Hk = lateral load on pile k 

m = number of pi 1 es in group. 

If the total load on the group is HG, then 

m 

I 
j=l 

H = 
G 

(10.24) 

If the piles are connected to a cap such that each of the piles Js 

caused to deflect an equal amount, the deflection pk i.s equal to yG, th~ 

deflection of the group. If there are m piles in the group, m + 1 

equations can be formulated using Eqs. 10.23 and 10.24 and solved for the 

group deflection and the load Hon each pile in the group. 
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In order to write the equations it is necessary to have the influence 

coefficients. Poulos has supplied a family of curves for the ~-values 

with the curves based on a Poisson's ratio of 0.5. The curves must be 

entered with values of L/b, s/b, ~, and KR, where Lis pile length, bis 

pile diameter, sis center to center spacing, ~ is the angle between the 

line through the two piles in question and the line giving the direction 

of the loading, and KR is defined by the following equation. 

where 

EI 
E L4 

s 

E = modulus of elasticity of pile material 

I = moment of inertia of pile 

E = soil modulus 
s 

(10.25) 

Figures 10.8 and 10.9 present Poulos curves for free-head piles that are 

subjected to shear and to moment, respectively. Figure 10.10 presents the 

Poulos curve for a fixed-head pile. 

Focht and Koch (1973) have proposed modifications of the Poulos meth

od. They suggested a revision of Eq. 10.23 as follows: 

(10.26) 

where 

R = relative stiffness factor. 

The relative stiffness factor is the ratio of the mudline deflection 

of a single pile computed by the p-y curve approach, y , to the deflection s 
p computed by the Poulos method that assumes elastic soil. In both 

instances, the lateral load on the single pile is the total lateral load 

on the pile group divided by the number of piles. 

Equation 10.27 is the Poulos equation for the deflection of a single 

pile with free head (Eq. 10.27 is identical to Eq. 7.28 except for differ

ence in symbols). 

P = I _H_ + I _M_ 
PF E L pM E L 2 

s s 
(10.27) 

The influence coefficients IpH and IpM may be obtained from Figs. 10.11 

and 10.12, respectively. 
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Equation 10.28 is the Poulos equation for the deflection of a single 

pile with fixed head. 

H 
P = I pF E L 

s 
The influence coefficients IpF may be obtained from Fig. 10.13. 
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,o-6 ,o-5 164 163 162 ,0- 1 
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KR 

Fig. 10.13. Influence factors IpF for a fixed-head pile 
(Poulos, 1971). 

(10. 28) 

The curves that are presented in Figs. 10.11 through 10.13 are 

entered with values of KR and L/b. (Figures 10.11 through 10.13 are the 

same as Figs. 7.10, 7.11, and 7.14, respectively, but are repeated here 

for convenience.) A value of Poisson's ratio of 0.5 was used in develop

ing all three curves. 

It is important in using the Poulos equations to obtain a value of 

the soil modulus Es that is as accurate as possible. It is generally 

agreed that the best method for determining Es is to perform a field load

ing test. However, such tests are not practical in many instances for 

both economic and practical reasons. In the absence of such tests, some 
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correlations of E with the undrained shear strength can be used as a s 
rough guide. The stress-strain data obtained from triaxial tests can fur-

nish representative Es values that are better than those obtained from 

correlations with the undrained shear strength. Focht and Koch state that 

Es should be selected from available stress-strain-test results using a 

low stress level in the soil. They suggest that the value should be at 

least as great as the secant modulus corresponding to a stress equal to 50 

percent of the strength and probably as great as the initial tangent modu

lus indicated by most laboratory tests. 

Using Eqs. 10.24 and 10.26, a set of simultaneous equations is formu

lated and solved for the group deflection yG and the lateral load on each 

pile in the group. The pile with the greatest load is selected for analy

sis by employing modified p-y curves. The p-values are modified by 

employing a multiplication factor to reflect the 11 shadowing 11 effect of 

closely-spaced piles. They-values are modified by multiplying all of the 

deflections in the p-y curves by a Y-factor of 2, 3, 4 and so on. The 

deflection of the single pile is computed with the modified p-y curves and 

the Y-factor is found that gives agreement between the single-pile 

deflection so computed and the deflection of the pile group. With this 

appropriate Y-factor, the pile behavior can be computed with the modified 

p-y curves, completing the solution. Figure 10.14 presents the form of 

the solution that employs the Y-factor . 

... 
2 
u 
~ deflection 

>- from modified Poul us - p/y 

ona I ysis 

Pile -head Deflection 

Fig. 10.14. 11 Y11 factor influence on computed pile-head deflection. 

265 



Single-Pile Method 

The single-pile method of analysis is based on the assumption that 

the soil contained between the piles moves with the group. Thus, the pile 

group with the contained soil can be treated as a single pile of large 

diameter. 

The first step in the use of the single-pile method is to select the 

group to be analyzed and to ascertain the loading. A plan view of the 

piles at the groundline is prepared and the minimum length is found for a 

line that encloses the group. This length is considered to be the circum

ference of a pile of large diameter; thus, the length is divided by~ to 

obtain the diameter of the imaginary pile. 

The next step is to determine the stiffness of the group. For a lat

eral load passing through the tops of the piles, the stiffness of the 

group is taken as the sum of the stiffness of the individual piles. Thus, 

it is assumed that the deflection at the pile top is the same for each pile 

in the group and, further, that the deflected shape of each pile is iden

tical. Some judgement must be used if the piles in the group have differ

ent lengths. 

An analysis is made for the imaginary pile, taking into account the 

nature of the loading and the boundary conditions at the pile head. The 

shear and moment for the imaginary large-sized pile is shared by the indi

vidual piles according to the ratio of the lateral stiffness of the indi

vidual pile to that of the group. 

The shear, moment, pile-head deflection, and pile-head rotation 

yield a unique solution for each pile in the group. As a final step, it is 

necessary to compare the single-pile solution to that of the group. It 

could possibly occur that the piles in the group could have an efficiency 

greater than one, in which case the single-pile solutions would control. 

Example Problem 

A sketch of an example problem is shown in Fig. 10.15. It is assumed 

that steel piles are embedded in a reinforced concrete mat in such a way 

that the pile heads do not rotate. The piles are 14HP89 by 40 ft long and 

placed so that bending is about the strong axis. The moment of inertia is 

904 in. 4 and the modulus of elasticity is 30 x 10 6 lb/sq in. The width of 

the section is 14.7 in. and the depth is 13.83 in. 
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Fig. 10.15. Plan and elevation of foundation 
analyzed in example problem. 

The soil is assumed to be a sand with an angle of internal friction 

of 34 degrees, the unit weight is 114 lb/cu ft, and the assumed Poulos 

soil modulus is 3000 lb/sq ft. 

Poulos-Focht-Koch Solution 

Computation of value of R: 

The lateral load is 450/9 or 50 kips 

Computation of p using Eqs. 10.25 and 10.28 

K = (30 X 106 )(904) = l.70 X 10-4 
R (3000)(480) 4 

L/b = 480/14.7 = 32.7 

IpF = 7.8 (from Fig. 10.13) 
(50,000) 

P = (7 .8) (3000)(480) = 0.27 in. 

Yt = 0.35 in. (from COM622 solution) 

R = 0.35/0.27 = 1.29. 
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Computation of Poulos deflection under unit load: 

pF = 0. 27 /50, 000 = 0. 54 x 10 - 5 in. /1 b. 

Determination of a-values: 

(Because a number of the a-values are identical, it is convenient to 

obtain these identical values together rather than to determine the values 

pile-by-pile as they are used.) 

al-2 = a2-1 = a2-3 = a3-2 = a4-5 = a5-4 = a5- 6 = a6-5 = 

a7-8 = a8-7 = a8-9 = ag_ 8 
~ = 90Q, s/b = (3)(12)/14.7 = 2.45, a= 0.35 

(from Fig. 10.10) 

(Note: the a-value was obtained by straight-line 

interpolation) 

a1~3 = a3-1 = a4-6 = a6-4 = a7-9 = a9-7 
~ = 90Q, s/b = 4.9, a= 0.23 

al-4 = a4-1 = a4-7 = a7-4 = a2-5 = a5-2 = a5- 8 = a8-5 = 

a3-6 = a6-3 = a6-9 = a9-6 
~ = 0°, s/b = 2.45, a= 0.53 

al-7 = a7-1 = a2-8 = a8-2 = a3-9 = a9-3 
~ = 0°, s/b = 4.9, a= 0.40 

al-5 = a5-1 = a2-4 = a4-2 = a2-6 = a6-2 = a3- 5 = a5-3 

a4-8 = a8-4 = a5-7 = a7-5 = a5-9 = a9-5 = a6- 8 = a8-6 
~ = 45°, s/b = 3.46, a= 0.38 

al-6 = a6-1 = a3-4 = a4-3 = a4-9 = a9-4 = a6-7 = a7-6 
~ = 63°, s/b = 5.47, a= 0.25 

al-8 = a8-1 = a2-7 = a7-2 = a2-9 = a9-2 = a8-3 = a3-8 
~ = 26.6°, s/b = 5.47, a= 0.28 

al-9 = a9-1 = a3-7 = a7-3 
~ = 45Q, s/b = 6.93, a= 0.22 

Simultaneous equations: 

Piles 1, 3, 7, 9 have identical equations: 

Pl= P3 = P7 = Pg 

= PF [RHl + (al-3 + al-7 + al-9)Hl 

+ (al-2 + a1_8)H2 + (al-4 + al-6)H4 

+ a1-5H5J 
= 0.54 x 10 -5 [1.29H 1 + (0.23 + 0.40 + 0.22) H1 

+ (0.35 + 0.28)H2 + (0.53 + 0.25)H4 + 0.38 H5J 

= 0.54 x 10 -s[2.14H 1 + 0.63H2 + 0.78 H4 + 0.38H5] (A) 
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Piles 2 and 8 have identical equations: 

Substitutions as shown above yield the following equation: 

p2 =Pg= 0.54 x 10- 5 [l.26H1 + l.69H2 + 0.76H4 + 0.53H5] (B) 

Piles 4 and 6 have identical equations: 
p4 = p6 = 0.54 x 10- 5 [1.56H1 + 0.76H2 + l.52H4 + 0.35H5] (C) 

Pile 5: 
p5 = 0.54 x 10- 5 [1.52H1 + l.06H2 + 0.70H4 + l.29H5] (D) 

Summation of loads: 

4H 1 + 2H2 + 2H4 + H5 = 450 kips (E) 

Solving equations A, B, C, D, E simultaneously, noting that: 

YG =Pl= P2 = P3 = P4 = P5 = P5 = P7 =Pg= Pg 
H1 = 61.9 kips, H2 = 49.1 kips, H4 = 40.9 kips, H5 = 22.5 kips 

yG=0.91in. 

Using a computer program to solve for the moment curve in Piles 
1, 3, 7, 9, the piles with the heaviest load (Sullivan and 
Reese, 1980): 

plotted. 

--:-
C -->. 

The Y-factors of 2, 4, and 5 were employed and Fig. 10.16 was 

1.5 

1.0 
0.91 

0.5 

2 4 4.8 

Y - factor 

6 

Fig. 10.16. Graphical solution for Y-facto~ 
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As noted, a Y-factor of 4.8 yielded a deflection of 0.91. The 

bending moment curve corresponding to a deflecton of 0.91 is shown in Fig. 

10.17. The maximum bending stress is computed as follows: 

Mc f = - = 

80 

160 

C 

. 
.c a. 240 
Q) 

0 

320 

400 

I 
(4.4 x 103)(6.915) = 33.7 kips/sq in. 

904 

480._ ___ _._ ___ _.. ____ ,L_ ___ ..,g,. ___ ~ 

-800 -600 -400 -200 0 200 

Moment, in.-lbs x 106 

Fig. 10.17. Bending moment curve for pile with greatest load, 
example solution. 

Solution Assuming Group Behaves as a Single Pile 

The computer progy,am was run with a pile diameter of 109 in. and a 

moment of inertia of 8136 in. 4 (9 times 904). The results were as fol

lows: 
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Y t = 1. 04 in. 

Mt= M = 3.53 x 10 7 in.-lb for group max 
= 3.92 x 10 6 in.-lb for single pile 

Bending stress= 31.9 k/sq in. 

The deflection and stress are in reasonable agreement with the previous 

solution. 

Comment on Solution of Example Problem 

For the example problem, good agreement was found between the two 

methods of analysis. However, that good agreement could be fortuitous. 

As noted earlier, there is a need for more full-scale load tests on pile 

groups under lateral loading. If the size of the construction project 

justifies, consideration should be given to a field test program prior to 

making final designs. 

The methods demonstrated herein are recommended for preliminary stu

dies. Studies should be done to investigate the effects on the results of 

changing the values of the input parameters through a range consistent 

with reasonable expectations. If final designs are made on the basis of 

results from these methods, an appropriate factor of safety should be 

carefully considered. 
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CHAPTER 11. STEP-BY-STEP PROCEDURE FOR DESIGN 

The material presented in the preceding chapters is designed for self

study. An engineer can begin with Chapter 1 with a reading schedule and 

read directly through the manual. The worked examples can be checked and 

some of the exercises can be worked out. 

If such a self-study program is elected, the guidelines that follow 

will serve to confirm the design procedures that are suggested. The pro

cedures that are shown below may be modified to agree with the particular 

preferences of the designer. However, if some time has passed since the 

self-study or if the designer elects merely to scan much of the material 

that has been presented, the step-by-step procedures may prove to be use

ful. 

1. A structural engineer and a geotechnical engineer should 

work together to establish the general nature of the prob

lem and to cooperate as solutions are developed (Chapter 

1). 

2. The nature, magnitude, and direction of the various load

ings on the pile should be found. The service load and 

design load, both axial and lateral, should be established 

(Chapter 1). Where there is uncertainty about the magni

tude of the load, an upper-bound value and a lower-bound 

value may be used. 

3. A pile should be selected for analysis (if not already done 

from considerations of axial loading) and the pile-head 

conditions should be considered, whether fixed, free, or 

partially restrained (Chapters 2, 4, 5, 6, and 7). The 

Broms method (Chapter 7) could prove useful if lateral load 

only controls design. 

4. A check should be made to see whether or not any of the 

assumptions made in deriving the differential equation are 

violated (Chapter 2); if so, a change in the pile make-up 

should be considered. 

5. A 11 of the information on the soil properties at the site 

should be analyzed and a soil profile should be selected for 

design (Chapter 3). If there is uncertainty about the soil 

properties, upper-bound values and lower-bound values may 
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be selected. The importance of the various soil parameters 

may be understood by reference to the first part of Chapter 

9. 

6. Having at hand the loading, the pile geometry, and a soil 

profile, p-y curves can be deve 1 oped according to proce

dures in Chapter 3. Or if Computer Program COM624 is avail

able, the program may be used directly in design or the soil 

subroutines in the program may be used to generate p-y 

curves, a desirable step to give a better understanding of 

the method of computation. 

7. Computer Program PMEIX (Appendix 5) can be used to obtain 

the bending stiffness of a reinforced concrete pile. The 

bending stiffness of other kinds of piles can be obtained 

from handbooks or from the elementary principles of mechan

ics. 

8. Computer Program PMEIX (Appendix 5) can be used to compute 

the bending moment capacity of a reinforced concrete pile. 

The moment capacity of other kinds of piles can be obtained 

from handbooks or from elementary principles of mechanics. 

The case studies of piles in clay and in sand in Chapter 9 

can provide guidance in performing Steps 7 and 8. 

9. The engineer who has not made many computations or is making 

only infrequent computations should use the procedures in 

Chapter 6 to gain familiarity with the design process and to 

gain some insight into the particular design being done. 

10. The input for Computer Program COM622 or Computer Program 

COM624 can be prepared. The best estimate of the important 

parameters can be made for small jobs and a series of sol

utions performed with increasing loads until a soil failure 

(excessive deflection) or a pile failure (excessive bending 

moment) is found. Only in rare cases should a soil failure 

be allowed, because a small increase in the length of a pile 

can lead to a sharp increase in ability to carry load. 

11. If the job is large and if time allows for small jobs, 

parameter studies can be made using the upper-bound values 

and lower-bound values of soil properties (and possibly 

other variables) to gain additional insight into the possi-
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ble range in the response of the pile. The computer sol

utions are inexpensive and especially so if results can be 

read directly from the screen of a terminal. 

12. As a part of using the computer program as outlined in Steps 

11 and 12, checks must be made to see that an appropriate 

increment length and a suitable closure tolerance are being 

employed (Chapter 5). The number of significant figures 

used in the internal computations of the computer must also 

be satisfactory (Appendix 3). 

13. From the computer solutions in Steps 10 and 11, the pile 

being analyzed can be judged to be satisfactory or a new 

pile can be selected and the steps repeated. A specific 

design will result, yield pile diameter (or projected 

width), length, and bending capacity along the length of 

the pile. Further, information can be gained as to the most 

favorable way to connect the pile head to the superstruc

ture. 

14. In performing the computer solutions as outlined in Steps 

10 and 11, the engineer should make use of the methods pre

sented in Chapters 4, 6, and 7 to make approximate solutions 

and to make checks on computer runs so that confidence is 

developed in the solution techniques. 

15. If the piles occur in groups, the methods shown in Chapter 

10 should be employed. In some cases it is not necessary to 

make the detailed analyses presented in Chapter 10, but 

judgement can be used in making any necessary design mod

ifications. 

16. The methods presented in Chapter 8 should be employed to see 

that the pi 1 es that are selected using the concepts of 

soil-structure interaction are adequate from the standpoint 

of structural behavior. 

17. A design office may have the same type of pile, say a steel 

bearing pile, to design in many instances in the same type 

of soil profile, say a sand with a high water table. A com

puter program, COM622 or COM624, can be used to develop 

design charts to allow preliminary designs, or final 
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designs in some cases, to be made rapidly. Such design 

charts are demonstrated in Chapter 7. 
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FEDERALLY COORDINATED PROGRAM (FCP) OF HIGHWAY RESEARCH, 
DEVELOPMENT, AND TECHNOLOGY 

The Offices of Research, Development, and 
Technology (RD&T) of the Federal Highway 
Administration (FHW A) are responsible for a broad 
research, development, and technology transfer pro
gram. This program is accomplished using numerous 
methods of funding and management. The efforts 
include work done in-house by RD&T staff, con
tracts using administrative funds, and a Federal-aid 
program conducted by or through State highway or 
transportation agencies, which include the Highway 
Planning and Research (HP&R) program, the Na
tional Cooperative Highway Research Program 
(NCHRP) managed by the Transportation Research 
Board, and the one-half of one percent training pro
gram conducted by the National Highway Institute. 

The FCP is a carefully selected group of projects, 
separated into broad categories, formulated to use 
research, development, and technology transfer 
resources to obtain solutions to urgent national 
highway problems. 

The diagonal double stripe on the cover of this report 
represents a highway. It is color-coded to identify 
the FCP category to which the report's subject per
tains. A red stripe indicates category 1, dark blue 
for category 2, light blue for category 3, brown for 
category 4, gray for category 5, and green for 
category 9. 

FCP Category Descriptions 
1 . Highway Design and Operation for Safety 

Safety RD&T addresses problems associated 
with the responsibilities of the FHW A under the 
Highway Safety Act. It includes investigation of 
appropriate design standards, roadside hard
ware, traffic control devices, and collection or 
analysis of physical and scientific data for the 
formulation of improved safety regulations to 
better protect all motorists, bicycles, and 
pedestrians. 

2 . Traffic Control and Management 
Traffic RD&T is concerned with increasing the 
operational efficiency of existing highways by 
advancing technology and balancing the 
demand-capacity relationship through traffic 
management techniques such as bus and carpool 
preferential treatment, coordinated signal tim
ing, motorist information, and rerouting of 
traffic. 

3 • Highway Operations 
This category addresses preserving the Nation's 
highways, natural resources, and community 
attributes. It includes activities in physical 

maintenance, traffic services for maintenance 
zoning, management of human resources and 
equipment, and identification of highway 
elements that affect the quality of the human en
vironment. The goals of projects within this 
category are to maximize operational efficiency 
and safety to the traveling public while conserv
ing resources and reducing adverse highway and 
traffic impacts through protections and enhance
ment of environmental features. 

4. Pavement Design, Construction, and 
Management 
Pavement RD&T is concerned with pavement 
design and rehabilititation methods and pro
cedures, construction technology, recycled 
highway materials, improved pavement binders, 
and improved pavement management. The goals 
will emphasize improvements to highway 
performance over the network's life cycle, thus 
extending maintenance-free operation and max
imizing benefits. Specific areas of effort will in
clude material characterizations, pavement 
damage predictions, methods to minimize local 
pavement defects, quality control specifications, 
long-term pavement monitoring, and life cycle 
cost analyses. 

5. Structural Design and Hydraulics 
Structural RD&T is concerned with furthering the 
latest technological advances in structural and 
hydraulic designs, fabrication processes, and con
struction techniques to provide safe, efficient 
highway structures at reasonable costs. This 
category deals with bridge superstructures, earth 
structures, foundations, culverts, river 
mechanics, and hydraulics. In addition, it in
cludes material aspects of structures (metal and 
concrete) along with their protection from cor
rosive or degrading environments. 

9. RD&T Management and Coordination 
Activities in this category include fundamental 
work for new concepts and system character
ization before the investigation reaches a point 
where it is incorporated within other categories 
of the FCP. Concepts on the feasibility of new 
technology for highway safety are included in this 
category. RD&T reports not within other FCP 
projects will be published as Category 9 projects. 
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